Research Contributions in
System Security

Dr. Yueqi Chen
Assistant Professor

Dept. of Computer Science, CU Boulder
December 7, 2022

@]l Computer Science
UNIVERSITY OF COLORADO BOULDER

Agenda

+ Review of Paper Presentation This Semester

> Some statistics

% Seven Types of Research Contributions in System

Security
> 14 types in fact: { Empirical, Artifact, Methodological,

Theoretical, Dataset, Survey, Opinion } x { Attack, Defense }

% Outcome of Research in Industry
> Series of research works, rather than one single paper, that

finally contribute to an industrial product

> |ndustrial products are carried out by people

Outside jaunting car Ireland, c. 1890-1900

Review of Paper Presentations this Semester

CFIXX: Object Tyr C++ Virtual Dispatch — NDSS*16
You Can Run but You Can! eadDiscIosure Exploits in Executable Code - CCS’14
Gaukas | GAIN: SilentigBreakiag BSLR iDthe Cloud — WOOT 15

. Weaponizing Middleboxes for TCP Reflected Ampilification — SEC’21

\

[Counterfeit Object-oriented Programming: On the Difficulty oCode Reuse Attacks in C++ Applications - S&P’15

Raghuveer MARX: Uncovering Class Hierarchies in C++ Programs - NDSS’17
Oxymoron: Making Fine-Grained Memoractical by Allowing Code Sharing - SEC’14
_ PAC it up: Towards Pointsing ARNMPoInter Authentication - SEC’19

|

HexType: Efficient Detection of Type Confusion Errors for C++ - CCS’17

Jackson _J Smashing the Gadgets Return-Oriented Programming Using In-place Cod S&P'12
: i 1)

from User Space - SEC’18
L PointGuardTMProtecting rom Buffer Overflow Vulnerabilities — SEC’03

~ Jump over ASLR(@ttacking Branch Predictors to Bypas ICRO’16
Kidus — Shuffler: Fast and Deployable Continuous Code Ré OSDI'16
BlockHammerCPreventing@owHammeDat Low Cost by BracKiisting Rapidly-Accessed DRAM Rows — HPCA'21
_ Dead: Long Live KASCR—ESS0S’17
~ Type Casting Verificatio Emerging Attack Vector — SEC’1
Sylvia - Gadge Me If You Can: Secure and Efficient Ad-hoc Instruction-LevelR zation dor x86 and AI’:iM - ASIACCS'13

Some Statistics

m Attack
Defense

Attack:

CAIN
Weaponizing
COOP

MARX

Meltdown

Jump over ASLR

Defense :

©ONO O~ N~

CFIXX

You Can Run but You Can’t Read
Oxymoron

PAC it up

HexType

Smashing the Gadgets
PointGuardTM

Shuffler

BlockHammer

. KASLR is Dead

. Type Casting Verification
. Gadge Me if You Can

. SafeHidden

. PUFs

10 Years of
NSE Support

for SaTC Research
2022 Secure and Trustworthy Cyberspace Principal Investigators' Meeting (SaTC Pl Meeting '22)

Panel 3: Quo vadis Cyber Security? Are we really building defense systems, or are we
all just into attacks for fun and profit?

Moderator: Engin Kirda (Northeastern University)

Panelists: Yan Shoshitaishvili (Arizona State University)

XiaoFeng Wang (Indiana University)

Lujo Bauer (Carnegie Mellon University)

Dongyan Xu (Purdue University)

Some Statistics (cont.)

Integrity:

&

= Integrity
= Randomizatioin
= [solation

Misc

Nogohrwh23y OO

COOP - 15

Type Casting Verification - 15
CFIXX - 16

HexType - 17

PointGuardTM - 03
PACitup-19

andomization:

Smashing the Gadgets - 12
Oxymoron - 14

Shuffler - 16

Gadge Me if You Can - 13
SafeHidden - 19

CAIN - 15

Jump over ASLR - 16

Isolation:
You Can Run but You Can’t Read

1.
2.
3.

Meltdown
KASLR is Dead

Misc:

1.

2.
3.
4

BlockHammer
Weaponizing
MARX

PUFs

j
}
|
}

F

object type integrity

pointer integrity

How to random?
Instruction-level, function level, program level;
random for one-time, continuous randomization

How to break randomization?
e.g., VM side channel, Branch Predictors side channel

permission isolation
address space isolation

Seven Types of Research Contribution in System Security

New and useful Change the minds
1 corpuses with analysis Expose trends of readers through
of its characteristics and gaps persuasion

N v /

defense

attack

A 4

empirical artifact methodological theoretical dataset survey opinion
contribution contribution contribution contribution contribution contribution contribution

I / AN T

New flndlng§ based Protgtype, new systems, New knowledge Neyv or improved concepts, | ea borrowed from “Research Contributions
on observation and architectures, tools, about how we definitions, models, in Human-Computer Interaction”, Jacob O.
data gathering toolkits, techniques carry our our work principles, or frameworks Wobbrock, Julie A. Kientz 6

Examples of the Seven Types of Contribution

New and useful Change the minds
1 corpuses with analysis Expose trends of readers through
of its characteristics and gaps persuasion
Terra: A _Vi rtual Why Is
An Empirical = Machine- LAVA: Large- Cybersecurity
defense KAISER, Study of the Based scale Not a Human-
PUFs Shuffler Reliability of Platform for Automat_e_d Scale Problem
UNIX Utilities ~_Trusted Vulnerability Anymore?
Computing Addition SoK
n - n . paper Why ’Correct’
.) ecognizing emote Computers
attack | K(H)eaps BAP;‘; I::inary Functions in Timing Can Leak
analysis Binary with Attacks are Your
platform Noyral Networks Practical Information ‘
empirical artifact methodological theoretical dataset survey opinion
contribution contribution contribution ~ contribution contribution contribution contribution

I / AN T

New findings based Prototype, new systems, New knowledge New or improved concepts,
on observation and architectures, tools, about how we definitions, models,

data gathering toolkits, techniques carry our our work principles, or frameworks

Evaluation Criteria for the Seven Types of Contribution

To what extent the How well they organize what

Evaluated on the

work supply with is currently known about a strength of their
1 a useful and topic and reveal opportunities argument
representative for future research /
\ X
Terra: A _Vi rtual Why Is
An Empirical = Machine- LAVA: Large- Cybersecurity
defense KAISER, Study of the Based scale Not a Human-
PUFs Shuffler Reliability of Platform for Automat_e_d Scale Problem
UNIX Utilities ~_Trusted Vulnerability Anymore?
Computing Addition SoK
n - n . paper Why ’Correct’
. . ecognizing emote Computers
attack | K(H)eaps BAP;‘; I::inary Functions in Timing Can Leak
analysis Binary with Attacks are Your
platform Noyral Networks Practical Information ‘
empirical artifact methodological theoretical dataset survey opinion
contribution contribution contribution contribution contribution contribution contribution

A

How important are the What they make
findings? How sound possible and how
are the methods? they do so

3

utility, reproducibility,
reliability, and validity
of the new method

\

novelty, soundness,
and power to describe,
predict, and explain

Case Study - |

You Can Run but You Can’t Read:
Preventing Disclosure Exbloits in Executable Code

In summary, we make the following three contributions:

Michael Backes

Saarland Universiy Bu e We systematically study the root causes behind disclo-
- [0 ey . . .
backes@mpi-sws.org sure vulnerabilities. Our insight is that current proces-
Philipp Koppe S sors only allow memory to be marked as non-writable
Ruhr-Universitat Bochum .
philipp.koppe@rub.de nu or executable. However, code that is supposed to be
executed must remain readable in memory and hence
ABSTRACT poses a risk for disclosure attacks.

— methodological contribution

Code reuse attacks allow an adversary to impose m|
behavior on an otherwise benign program. To mitigg 3 s {3 & =]
attacks, a common approach is to disguise the ad e We propose the prlmltlve xecute-no Re .
content of code snippets by means of randomization o that maintains the ability to exectte code but prevents
ing, leaving the adversary with no choice but guessing
ever, disclosure attacks allow an adversary to scan a p reading code as data, which is necessary to disassemble
even remotely—and enable her to read executable 1 2 .
on-the-fly, thereby allowing the just-in-time assembl code and finally find ROP gadgets (especially when
ploits on the target site.

In this paper, we propose an approach that fundan they are Constructed On—the—ﬁy) .

thwarts the root cause of memory disclosure exploits
venting the inadvertent reading of code while the co:

can still be executed. We introduce a new primitive [] We im lemented —_— i 1 1
Ezecute-no-Read (XnR) which ensures that code can| p - 5 g 3 artlfaCt Co ntrl bUtlon
executed by the processor, but at the same time code ware as a kernel-level modification for Linux and Win-

be read as data. This ultimately forfeits the self-disa{ . .

which is necessary for just-in-time code reuse attac dows. We achieve such hardware emulations by patch-

DADY 4 ceencle M 4l Lonnd A€ cvem Teeedad s VoT]

ing the memory management system in order to detect
inadvertant reads of executable memory. Our proto-
type is available for both Linux and Windows and in-
troduces only a small performance overhead.

Case Study - |l

Counterfeit Object-oriented E

On the Difficulty of Preventing Code Reuse Attacks

Felix Schuster*, Thomas Tendyck*, Christopher Liebchen, Lucas Davif, 4
*Horst Gortz Institut (HGI)
Ruhr-Universitidt Bochum, Germany Technische Universitif

Abstract—Code reuse attacks such as return-oriented program-
ming (ROP) have become prevalent techniques to exploit memory
corruption vulnerabilities in software programs. A variety of
corresponding defenses has been proposed, of which some have
already been successfully bypassed—and the arms race continues.

In this paper, we perform a systematic assessment of recently

d CFI i

Purpose

Code example

2015 IEEE Symposium on Security and Pri

Vfgadget type
ML

The main loop; iterate over container of pointers to counterfeit object and invoke a virtual function
on each such object.

see Figure 1

fCA

be instantiated, iff
overflows and femy]

ARITH-G Perform arithmetic or logical operation. see Figure 4

W-G Write to chosen address. see Figure 4

R-G Read from chosen address. no example given, similar to W-G
INV-G Invoke C-style function pointer. see Figure 8

W-COND-G Conditionally write to chosen address. Used to implement conditional branching. see Figure 6

ML-ARG-G Execute vfgadgets in a loop and pass a field of the initial object to each as argument. see Figure 6

W-SA-G Write to address pointed to by first argument. Used to write to scratch area. see Figure 6

MOVE-SP-G Decrease/increase stack pointer. no example given

LOAD-R64-G Load argument register rdx, r8, or r9 with value (x64 only). see Figure 4

TABLE I: Overview of COOP vfgadget types that operate on object fields or arguments; general purpose types are atop;
auxiliary types are below the double line.

conditions are p:

TIT T TITST PIRR

number of techniques have been proposed that provide means
of spatial memory safety [5], [6], temporal memory safety [4],

[T T TIOCTT; T TS

artifact contribution

and other against code reuse or both [13], [31], [36], [45]. On the downside, for precise
Category k Realizati Effective against COOP ?
Original CFI + shadow call stack [3] | Binary + debug symbols X
CCFIR [58] Binary X
. O-CFI [54] Binary X
GencsieiCHL SW-HW Co-Design [15] Source code + specialized hardware X
Windows 10 Tech. Preview CFG Source code X
LLVM IFCC [52] Source code ?
—uvarious— [5], [29], [52] Source code L4
T-VIP [24] Binary X
CH-awate; CHIL VTint [57] Binary X
vfGuard [41] Binary ?
—various— [14], [40], [56] CPU debugging/performance monitoring features XXX
Heuristics-based detection HDROP [60] CPU performance monitoring counters X 1 1
Microsoft EMET 5 [34] ‘WinAPI function hooking X S u rvey Co nt rl b Ut I 0 n
STIR [55] Binary X
Code hiding, shuffling, or rewriting | G-Free [38] Source code X
XnR [7] Binary / source code ?
—various— [4]-[6], [13], [36], [45] | Mostly source code V'V V) - see §VII-E
Memory safety CPI/CPS [31] Source code VIX
TABLE II: Overview of the effectiveness of a selection of code reuse defenses and memory safety techniques (below double
line) against COOP; v indicates effective protection and X indicates vulnerability; ? indicates at least partial protection.

10

Case Study -l

2012 IEEE Symposium on Security and Privacy

Smashing the Gadgets: Hindc
Programming Using In-Place

Vasilis Pappas, Michalis Polychronakis, an
Columbia Universit]

{vpappas,mikepo, angelos}@cs

Abstract—The wide adoption of non-executable page protec-
tions in recent versions of popular operating systems has given
rise to attacks that employ return-oriented programming (ROP)
to achieve arbitrary code execution without the injection of
any code. Existing defenses against ROP exploits either require
source code or symbolic debugging information, or impose a
significant runtime overhead, which limits their applicability for
the protection of third-party applications.

In this paper we present in-pl code randomizati a
practical mitigation technique against ROP attacks that can
be applied directly on third-party software. Our method uses
various narrow-scope code transformations that can be applied
statically, without changing the location of basic blocks, allowing
the safe randomization of stripped binaries even with partial
disassembly coverage. These transfor ions effectively elimi
about 10%, and probabilistically break about 80% of the useful
instruction sequences found in a large set of PE files. Since no
additional code is inserted, in-place code randomization does
not incur any measurable runtime overhead, enabling it to be
easily used in tandem with existing exploit mitigations such
as address space layout randomization. Our evaluation using
publicl ilable ROP loits and two ROP code generation
toolkits d rates that our techni prevents the exploitation
of the tested vulnerable Windows 7 applications, including Adobe
Reader, as well as the automated construction of alternative ROP
payloads that aim to circumvent in-place code randomization
using solely any remaining unaffected instruction sequences.

only n
non-ex
and o
matter|
Recen
to byp
includ:
most g
in the

Atta
becaug
remair
layout
of cod|
segme
Windo
execut|
incom
the ba:
throug|

Othy
ASLR|
tion [1

¢ We
practical approd
against ROP attacks. We descrlbe in detail various
narrow-scope code transformations that do not change
the semantics of existing code, and which can be safely
applied on compiled binaries without symbolic debugging
informatigp

x86 PE ex@
safety of the applied code transformations with extensive
runtime code coverage tests using third-party executables.
¢ We prov1de a detailed analysis of how in-place code
affects available gadgets using a large set

break about 80% of the gadgets in the tested files.
o We evaluate our approach using publicly available ROP
exploits and generic ROP payloads, as well as two ROP
payload construction toolkits. In all cases, the randomized
versions of the executables break the malicious ROP
code, and prevent the automated construction of alter-
native payloads using the remaining unaffected gadgets.

> methodological contribution

—> artifact contribution

> empirical contribution

11

Case Study - IV

Oxymoron
Making Fine-Grained Memory
Practical by Allowing Cq

Michael Backes
Saarland University, Germany Saarl
Max-Planck-Institute for nuernber
Software Systems, Germany
backes@mpi-sws. org

Abstract avenue
that ran

The latest effective defense against code reuse attacks is blocks

fine-grained, per-process memory randomization. How-

ever, such process randomization prevents code shar- To be
ing since there is no longer any identical code to share must pr|
between processes. Without shared libraries, however, the mer|
tremendous memory savings are forfeit. This drawback of anotl
may hinder the adoption of fine-grained memory ran- light of]
domization. Hence,
X solution|
We present Oxymoron, a secure fine-grained memory gle prod
randomization technique on a per-process level thatdoes . 4. in
not interfere with code sharing. Executables and libraries sible. A
built with Oxymoron feature ‘memory-layout-agnostic o 1o o1
code’, which runs on a commodity Linux. Our theoreti- order of

cal and practical evaluations show that Oxymoron is the
first solution to be secure against just-in-time code reuse
attacks and demonstrate that fine-grained memory ran-
domization is feasible without forfeiting the enormous
memory savings of shared libraries.

Every memory page is assigned a random address at
load-time. Thus, the first page can choose 1 out of n
possible page-aligned address slots. The second 1 out
of n—1 and so forth. For p total process pages to lay
out in memory, this yields a total of = 'p), combina-
tions. The adversary’s probability of correctly guessing
one address is hence the reciprocal M . Ina 32 bit ad-
dress space, we have n = 29 = 524, 288 possible page
addresses. The probability of guessing one page cor-
rectly therefore is 219, That scenario is intuitively iden-
tical to ASLR which only randomizes the base address
of the code. However, when finding ROP gadget chains,
the page granularity drastically lowers the chance of suc-
cess compared to ASLR because several pages have to
be guessed correctly. For a 128 kB (p = 32 pages) exe-
cutable to lay out in memory, the adversary’s probability
of guessing the correct memory layout therefore is:
(n—p)! _ (2°-2%)1 _ 0608

r [Advlayouf] =" @ 219)

To summarize: fine-grained randomization solutions pre-
sented so far come at the expense of tremendous memory
overhead, which renders them impractical.

theoretical contribution

12

How Research Works Contribute to Industrial Products

KNOX Workspace SE for Android

Sensitive Data Protection
ANDROID FRAMEWORK

On Device

DM-Verity Encryption

SELinux

Attestation Trusted Ul
TIMA KeyStore/Clie ~t Certificate Management

weal-time Kernel Protection -Periodic Kernel Measurement

TRUSTZONE

« Secure/Trusted Boot Rollback Prevention

BOOTLOADER
Samsung Sec «e Boot Key
Rollback Prevention Fuses
Device Device-Unique KNOX
Root Key Hardware Key Warranty Bit
HARDWARE

Whitepaper: Samsung Knox Security Solution, Version 2.2 May, 2017

Samsung’s Patented Real-time Kernel Protection (RKP)

A security monitor in either the Secure World of ARM TrustZone or

KNOX Workspace SE for Android

Sensitive Data Protection

ANDROID FRAMEWORK

a thin hypervisor
> TEE, first defined in 2009
> The first hypervisor supporting full virtualization were SIN

40 produced in Jan 1967. Classified into two types in Rg
PhD thesis

Prevent modification of kernel code, injection of ut

execution of userspace code in the privileged mog
> IMA
> kGuard: Lightweight kernel protection against return-to-

> Many other previous works

Prevent DMA Attacks, Control Flow Attacks, etc

True IOMMU protection from DMA attacks: When copy is faster than zero copy
A Markuze, A Morrison, D Tsafrir - Proceedings of the Twenty-First ..., 2016 - dl.acm.org

... True DMA attack protection We propose an alternative intra-OS protection design ... We use
the IOMMU to restrict device access to a set of permanently-mapped shadow DMA buffers and ...
Y¢ Save 99 Cite Cited by 51 Related articles All 7 versions

IOMMU-resistant DMA attacks

G Kupfer, D Tsafrir, N Amit - 2018 - cs.technion.ac.il

... presenting several concrete attacks that remain valid even when an IOMMU is present ...

attacks by presenting classic DMA attacks, the IOMMU protection against them, and recent attacks ...
Y¢ Save D9 Cite Cited by 6 Related articles 99

Thunderclap: Exploring vulnerabilities in operating system IOMMU protection via
DMA from untrustworthy peripherals

T Markettos, C Rothwell, BF Gutstein, A Pearce... - 2019 - repository.cam.ac.uk

... They are included here as a demonstration of an OS that makes poor use of the IOMMU

to defend against DMA attacks and the use of our platform to reproduce state of the art ...

Y¢ Save P9 Cite Cited by 69 Related articles All 13 versions 99

Characterizing, exploiting, and detecting DMA code injection vulnerabilities in the
presence of an IOMMU
M Alex, S Vargaftik, G Kupfer, B Pismeny... - Proceedings of the ..., 2021 - dl.acm.org

... First, we describe classic DMA attacks and the IOMMU protection against them. Then, we
discuss well-established protection practices to prevent privilege escalation (ie, code injection) ...
Y¢ Save D9 Cite Citedby4 Related articles All 6 versions

Bypassing IOMMU protection against I/O attacks

B Morgan, E Alata, V Nicomette... - 2016 Seventh Latin ..., 2016 - ieeexplore.ieee.org

... In this paper, we focus on DMA attacks. These attacks were described in several studies. In
... Fortunately, most of these vulnerabilities have been fixed with the integration of IOMMU in ...
Y¢ Save P9 Cite Cited by 20 Related articles All 6 versions

14

Industrial Products Are Carried Out by People

% It costs roughly 0.5 million to

graduate one PhD student
> Tuition, RA/TA, fringe benefits, double pay
in summer, conference travelling, fees
p/semester, IDC

> Quit or dismissal halfway
% Your contribution is more than 0.5
million
> High-tech needs people like Steven Jobs,

Bill Gates, and You to make progress

Hypervision Across Worlds: Real-time Kernel Protection
from the ARM TrustZone Secure World

Ahmed M. Azab!
Rohan Bhutkar*

Jitesh Shaht
Jia Ma!

Quan Chen?

Peng Ning*2
Wenbo Shen?

Guruprasad Ganesh!

! Samsung KNOX R&D, Samsung Research America
{a.azab, peng.ning, j1.shah, r1.bhutkar, g.ganesh, jia.ma}@samsung.com

2 Department of Computer Science, NC State University
{pning, qchen10, wshen3}@ncsu.edu

ABSTRACT

TrustZone-based Real-time Kernel Protection (TZ-RKP) is
a novel system that provides real-time protection of the OS
kernel using the ARM TrustZone secure world. TZ-RKP is
more secure than current approaches that use hypervisors
to host kernel protection tools. Although hypervisors pro-
vide privilege and isolation, they face fundamental security
challenges due to their growing complexity and code size.
TZ-RKP puts its security monitor, which represents its
entire Trusted Computing Base (TCB), in the TrustZone
secure world; a safe isolated environment that is dedicated
to security services. Hence, the security monitor is safe

General Terms

Security

Keywords
Integrity Monitoring; ARM TrustZone; Kernel Protection

1. INTRODUCTION

Despite recent advances in systems security, attacks that
compromise the OS kernel still pose a real threat [1,5,27,37].
Such attacks can access system sensitive data, hide mali-

15

