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Abstract

Software vendors usually prioritize their bug remedia-
tion based on ease of their exploitation. However, accu-
rately determining exploitability typically takes tremen-
dous hours and requires significant manual efforts. To ad-
dress this issue, automated exploit generation techniques
can be adopted. In practice, they however exhibit an in-
sufficient ability to evaluate exploitability particularly for
the kernel Use-After-Free (UAF) vulnerabilities. This is
mainly because of the complexity of UAF exploitation as
well as the scalability of an OS kernel.

In this paper, we therefore propose FUZE, a new frame-
work to facilitate the process of kernel UAF exploitation.
The design principle behind this technique is that we
expect the ease of crafting an exploit could augment a se-
curity analyst with the ability to evaluate the exploitability
of a kernel UAF vulnerability. Technically, FUZE utilizes
kernel fuzzing along with symbolic execution to identify,
analyze and evaluate the system calls valuable and use-
ful for kernel UAF exploitation. In addition, it leverages
dynamic tracing and an off-the-shelf constraint solver to
guide the manipulation of vulnerable object.

To demonstrate the utility of FUZE, we implement
FUZE on a 64-bit Linux system by extending a binary
analysis framework and a kernel fuzzer. Using 15 real-
world kernel UAF vulnerabilities on Linux systems, we
then demonstrate FUZE could not only escalate kernel
UAF exploitability but also diversify working exploits.
In addition, we show that FUZE could facilitate security
mitigation bypassing, making exploitability evaluation
less challenging and more efficient.
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1 Introduction

It is very rare for a software team to ever have sufficient re-
sources to address every single software bug. As a result,
software vendors such as Microsoft [13] and Ubuntu [28]
design and develop various strategies for prioritizing their
remediation work. Of all of those strategies, remediation
prioritization with exploitability is the most common one,
which evaluates a software bug based on ease of its ex-
ploitation. In practice, determining the exploitability is
however a difficult, complicated and lengthy process, par-
ticularly for those Use-After-Free (UAF) vulnerabilities
residing in OS kernels.

Use-After-Free vulnerabilities [24] are a special kind
of memory corruption flaw, which could corrupt valid
data and thus potentially result in the execution of arbi-
trary code. When occurring in an OS kernel, they could
also lead to privilege escalation [6] and critical data leak-
age [17]. To exploit such vulnerabilities, particularly in
an OS kernel, an attacker needs to manually pinpoint the
time frame that a freed object occurs (i. e., vulnerable
object) so that he could spray data to its region and thus
manipulate its content accordingly. To ensure that the
consecutive execution of the OS kernel could be influ-
enced by the data sprayed, he also needs to leverage his
expertise to manually adjust system calls and correspond-
ing arguments based on the size of a freed object as well
as the type of heap allocators. We showcase this process
through a concrete example in Section 2.

To facilitate exploitability evaluation, an instinctive
reaction is to utilize the research works proposed for ex-
ploit generation, in which program analysis techniques
are typically used to analyze program failures and pro-
duce exploits accordingly (e.g., [5, 7, 8, 29]). However,
the techniques proposed are insufficient for the problem
above. On the one hand, this is due to the fact that the
program analysis techniques used for exploit generation
are suitable only for simple programs but not the OS
kernel which has higher complexity and scalability. On



the other hand, this is because their technical approaches
mostly focus on stack or heap overflow vulnerabilities,
the exploitation of which could be possibly facilitated by
simply varying the context of a PoC program, whereas the
exploitation of a UAF vulnerability requires the spatial
and temporal control over a vulnerable object, with the
constraints of which a trivial context variation typically
does not benefit exploitability exploration.

In this work, we propose FUZE, an exploitation frame-
work to evaluate the exploitability of kernel Use-After-
Free vulnerabilities. In principle, this framework is simi-
lar to the technical approaches proposed previously, which
achieves exploitability evaluation by automatically ex-
ploring the exploitability of a vulnerability. Technically
speaking, our framework however follows a completely
different design, which utilizes a fuzzing technique to
diversify the contexts of a kernel panic and then lever-
ages symbolic execution to explore exploitability under
different contexts.

To be more specific, our system first takes as input a
PoC program which does not perform exploitation but
causes a kernel panic. Then, it utilizes kernel fuzzing to
explore various system calls and thus to mutate the con-
texts of the kernel panic. Under each context pertaining to
a distinct kernel panic, FUZE further performs symbolic
execution with the goal of tracking down the primitives
potentially useful for exploitation. To pinpoint the prim-
itives truly valuable for exploiting a UAF vulnerability
and even bypassing security mitigation, FUZE summa-
rizes a set of exploitation approaches commonly adopted,
and then utilizes them to evaluate primitives accordingly.
In Section 3, we will describe more details about this
exploitation framework.

Different from the existing techniques (e.g., [5, 7, 8,
29]), the proposed exploitation framework is not for the
purpose of fully automating exploit generation. Rather, it
facilitates exploitability evaluation by easing the process
of exploit crafting. More specifically, FUZE facilitates
exploit crafting from the following aspects.

First, it augments a security analyst with the ability to
automate the identification of system calls that he needs to
take advantages for UAF vulnerability exploitation. Sec-
ond, it allows a security analyst to automatically compute
the data that he needs to spray to the region of the vulner-
able object. Third, it facilitates the ability of a security
analyst to pinpoint the time frame when he needs to per-
form heap spray and vulnerability exploitation. Last but
not least, it provides security analysts with the ability to
achieve security mitigation bypassing.

As we will show in Section 6, with the facilitation
from all the aforementioned aspects, we could not only
escalate kernel UAF exploitability but also diversify work-
ing exploits from various kernel panics. In addition, we
demonstrate FUZE could even help security analysts to

1 void *task1(void *unused) {
2 ...
3 int err = setsockopt(fd, 0x107, 18,

↪→ ..., ...);
4 }
5
6 void *task2(void *unused) {
7 int err = bind(fd, &addr, ...);
8 }
9
10 void loop_race() {
11 ...
12 while(1) {
13 fd = socket(AF_PACKET, SOCK_RAW,

↪→ htons(ETH_P_ALL));
14 ...
15 //create two racing threads
16 pthread_create (&thread1, NULL,

↪→ task1, NULL);
17 pthread_create (&thread2, NULL,

↪→ task2, NULL);
18
19 pthread_join(thread1, NULL);
20 pthread_join(thread2, NULL);
21
22 close(fd);
23 }
24 }

Table 1: A PoC code fragment pertaining to the kernel UAF
vulnerability (CVE-2017-15649).

craft exploits with the ability to bypass broadly-deployed
security mitigation such as SMEP and SMAP. To the best
of our knowledge, FUZE is the first exploitation frame-
work that can facilitate exploitability evaluation for kernel
Use-After-Free vulnerabilities.

In summary, this paper makes the following contribu-
tions.

• We designed FUZE, an exploitation framework that
utilizes kernel fuzzing along with symbolic execu-
tion to facilitate kernel UAF exploitation.
• We implemented FUZE to facilitate the process of

exploit generation by extending a binary analysis
framework and a kernel fuzzer on a 64-bit Linux
system.
• We demonstrated the utility of FUZE in crafting

working exploits as well as facilitating security mit-
igation circumvention by using 15 real world UAF
vulnerabilities in Linux kernels.

The rest of this paper is organized as follows. Sec-
tion 2 describes the background and challenge of our
research. Section 3 presents the overview of FUZE. Sec-
tion 4 describes the design of FUZE in detail. Section 5
describes the implementation of FUZE, followed by Sec-
tion 6 demonstrating the utility of FUZE. Section 7 sum-
marizes the work most relevant to ours. Finally, we con-
clude this work in Section 8.
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Figure 1: The typical workflow of crafting a working exploit. ¶ Identifying the time window between the occurrence of dangling
pointer and its dereference; · selecting the proper system call syscall_M to perform heap spray; ¸ adjusting the argument of the
system call syscall_M; ¹ introducing the system call syscall_M and revising the original PoC program accordingly. Note that
the zigzag line indicates the kernel execution, and syscall_A and syscall_B denote the system calls that attach to the occurence
of the danlging pointer and its dereference respectively.

2 Background and Challenge

To craft an exploit for a UAF vulnerability residing in
an OS kernel, a security analyst needs to analyze a PoC
program that demonstrates a UAF vulnerability with a
kernel panic but not exploits the real target. From that
program, he then typically needs to take the following
steps in order to perform a successful exploitation.

First, the security analyst needs to pinpoint the system
call(s) resulting in the occurrence of a dangling pointer as
well as the dereference of that pointer (see ¶ in Figure 1).
Second, he needs to analyze the freed object that the
dangling pointer refers to based on the size of the object
as well as the types of heap allocators. Thus, he can
identify a system call to perform a heap spray within the
time frame tied to the occurrence and dereference of that
dangling pointer (see · in Figure 1).

Generally speaking, the objective of the heap spray
is to take over the freed object and thus leverage the
data sprayed to redirect the control flow of the system to
unauthorized operations, such as privilege escalation or
critical data leakage. As a result, the security analyst also
needs to carefully compute the content of the data sprayed
based on the semantic of the PoC program, and thus adjust
the arguments of the system call selected for performing
heap spray, before he finally revises the PoC program for
exploitation in a manual fashion. As is specified in ¸
and ¹, we depict the last step in Figure 1.

In the past, research (e.g., [33]) has focused on how
to augment a security analyst with the ability to se-
lect a system call and perform an effective heap spray
(i. e., facilitating the step · shown in Figure 1). To some
extent, this does facilitate the process of crafting exploits.
By simply following the typical workflow mentioned
above along with the facilitation in the step ·, however,

In a PoC program, the occurrence of a dangling pointer as well as
its dereference might be triggered in the same system call.

it is still challenging and oftentimes infeasible for a se-
curity analyst to craft a working exploit for a real-world
UAF vulnerability. As we will elaborate below through a
real-world UAF vulnerability, this is due to the fact that
a PoC program barely provides a useful running context,
under which a security analyst can perform successful
exploitation.

2.1 PoC Program for Kernel UAF Vulnera-
bility

Table 1 shows a PoC program in C code, capable
of triggering the kernel UAF vulnerability indicated
by CVE-2017-15649. As is shown in line 3,
setsockopt() is a system call in Linux. Upon its in-
vocation over a certain type of socket (created in line
13), it creates a new object in the Linux kernel, and then
prepends it at the beginning of a doubly linked list (see
Figure 2a).

In line 16 and 17, the PoC program creates two
threads, which invoke system calls setsockopt() and
bind(), respectively. By repeatedly calling these two
lines of code through an infinite loop, the PoC creates a
race condition which results in an accidental manipulation
to the flag residing in the newly added object.

At the end of each iteration, the PoC invokes system
call close() to free the object newly added. Because
of the unexpected manipulation, the Linux kernel fails
to overwrite the “next link” in the head node and thus
leaves a dangling pointer pointing to a freed object (see
Figure 2b).

In the consecutive iteration of the occurrence of the
dangling pointer, the PoC program invokes system calls
and creates a new object once again. As is shown in
Figure 2c, at the time of prepending the object to the
list, a system call dereferences the dangling pointer and
thus modifies data in the “previous link” residing in the



(a) Inserting a new object to doubly linked list.

(b) Triggering a free operation with a dangling pointer left behind.

(c) Writing unmanageable data to a memory chunk freed previ-
ously.

Figure 2: Demonstrating a kernel panic triggered through a
real-world kernel Use-After-Free vulnerability indicated by
CVE-2017-15649.

freed object, resulting in an unexpected write operation
which further triggers a kernel panic in consecutive kernel
execution.

2.2 Challenge of Crafting Working Ex-
ploits

Following the typical workflow specified in Figure 1 to
craft an exploit for the vulnerability above, in the step ·,
a security analyst needs to identify a proper system call,
use it to perform heap spray and thus turn the PoC into a
working exploit. By taking a close look at the unexpected
write primitive that the aforementioned PoC left behind,

(a) Original running context. (b) New running context.

Figure 3: Context variation before and after. The original
context is indicated by the PoC program in Table 1 and the new
context is obtained through the insertation of the new system
call sendmsg().

however, we can easily observe that this write operation
provide an analyst only with an ability to write the address
of a new object to the kernel heap region indicated by the
dark-gray box in Figure 2c.

Given that the allocation of heap objects is under
the control of Linux kernel, and an analyst could only
have limited influence upon the allocation, we can safely
conclude that the unexpected write primitive only gives
the analyst the privilege to write an unmanageable data
(i. e., the address of the new object) to an unmanageable
heap address in Linux kernel. In other words, this implies
that the analyst cannot take advantage of the unexpected
write operation to manipulate the instruction pointer rip
and thus carry out a control flow hijacking, nor leverage
it to manipulate critical data in the Linux kernel so that it
could fulfill a privilege escalation.

3 Overview

While the running example above shows the difficulty of
crafting a working exploit, it does not mean the aforemen-
tioned vulnerability is unexploitable. In fact, by inserting
the system call sendmsg() with carefully crafted argu-
ments into the aforementioned PoC program right behind
line 22, we can introduce new operations in between
the occurrence of the dangling pointer and its dereference.
Since the system call sendmsg() has the capability of
dereferencing the data in the object newly prepended in
the doubly linked list, when an accidental free operation
occurs and a dangling pointer appears, it has the ability to
dereference the dangling pointer prior to the system call
defined in the original PoC and thus changes the way how
kernel experiences panic.

As is illustrated in Figure 3, the new kernel panic (or in
other words the new PoC program) represents a new run-
ning context, where the system call sendmsg() retrieves
the data in the freed object, dereferences it as an invalid



function pointer and thus drives the kernel to a new panic
state. Different from the original running context indi-
cated by the PoC program in Table 1, we can easily ob-
serve, this new context provides a security analyst with
a new primitive, with which he can spray data carefully
crafted, manipulate the instruction pointer rip and thus
perform a control flow hijack. As we will demonstrate in
Section 6, this context even provides a security analyst
with the ability to bypass kernel security mitigation such
as SMEP and SMAP.

Motivated by this observation, we propose a techni-
cal approach to facilitate the context variation of a PoC
program. Along with other techniques that will be intro-
duced in the following sections, we name them FUZE, an
exploitation framework. The design philosophy behind
the framework is that context variation could facilitate
the identification of exploitation primitives, with which
crafting working exploits can be potentially expedited
and the exploitability of kernel UAF vulnerabilities can
be significantly escalated. In the following, we discuss
the considerations that go into the design of FUZE as well
as the high level design of this exploitation framework.

3.1 Requirement for Design

As is mentioned earlier in Section 1, the ultimate goal
of FUZE is not to yield a working exploit automatically
but to facilitate the ability of a security analyst to craft
a working exploitation. As a result, we decide to design
FUZE to facilitate exploit crafting from the following four
aspects.

First, FUZE must provide a security analyst with the
ability to track down the vulnerable object, the occurrence
of a dangling pointer and its dereference. With this abil-
ity, an analyst could rapidly and easily select a proper
system call as well as pinpoint the right time window to
perform heap spray (i. e., facilitating the steps ¶ and ·
in Figure 1). Second, FUZE must augment a security
analyst with the ability to synthesize new PoC programs
that would drive kernel to panic in different contexts.
With this, an analyst could perform context variations in
a highly efficient fashion with minimal manual efforts.
Third, FUZE must be able to extend the ability of an an-
alyst to automatically select the useful contexts. This is
because newly-generated contexts do not unveil whether
they could be used for exploitation, and security analysts
typically have difficulty in determining which contexts
are useful for successful exploitation. Given the fact that
kernel security mitigation widely deployed can easily hin-
der an exploitation attempt, this determination usually
becomes even more difficult and oftentimes involves in-
tensive human efforts. Last but not least, FUZE must give
a security analyst the capability to automatically derive
the data that needs to be sprayed in between the occur-

(a) Exploitable machine
states identified by ker-
nel fuzzing.

(b) Exploitable ma-
chine states identified
by symbolic execution.

Figure 4: An illustration of evaluating contexts and identifying
exploitable machine states using kernel fuzzing and symbolic
execution. Note that “non-exploitable machine state” denotes
the state from which we have not yet had sufficient knowledge
to perform an exploitation.

rence of a dangling pointer and its dereference. This is
because crafting data to take over the freed region and
perform exploitation typically needs significant expertise
as well as tremendous manpower.

3.2 High Level Design

To satisfy the requirements mentioned above, we design
FUZE to first run a PoC program and perform analysis
using off-the-shelf address sanitizer. Along with the facili-
tation of a dynamic tracing approach, FUZE could identify
the critical information pertaining to the vulnerable ob-
jects as well as the time window needed for consecutive
exploitation.

Using the information identified, we then design FUZE
to automatically vary the contexts of that PoC for the
purpose of easing the process of synthesizing new PoC
programs. Recall that we alter the context of a PoC pro-
gram by inserting a new system call that dereferences the
vulnerable object in between the occurrence of the dan-
gling pointer and its dereference (see Figure 3b). Tech-
nically speaking, we therefore design and develop an
under-context fuzzing approach, which automatically ex-
plores the kernel code space in the time window identified
and thus pinpoints the system calls (and corresponding ar-
guments) that can drive the kernel panic in a new context.



Similar to the context represented by that original PoC,
a new context (i. e., new kernel panic) does not neces-
sarily assist an analyst to craft a working exploit. More-
over, as is mentioned above, a security analyst generally
has difficulty in determining, following which contexts
he could craft a working exploit. Therefore, we further
design FUZE to automatically evaluate each of the new
contexts. Intuition suggests that we could summarize a set
of exploitable machine states based on the exploitation ap-
proaches commonly adopted. For each context, we could
then examine whether the corresponding terminated ker-
nel state matches one of these exploitable machine states.
As is illustrated in Figure 4a, this would allow FUZE to
filter out those contexts truly useful for exploitation.

However, this intuitive design is problematic. In ad-
dition to the system call selected, the terminated kernel
state (i. e., the site where a kernel experiences panic) is
dependent upon the remanent content in the freed object.
Given that an attacker has the full control over the content
in the freed object, using the aforementioned approach
that takes only the consideration of system calls, we may
inevitably disregard some contexts that allow a security
analyst to perform a successful exploitation. Rather than
following the intuitive approach above, our design there-
fore sets each byte of the freed object as a symbolic value
and then perform symbolic execution under each context.
As is shown in Figure 4b, this allows FUZE to explore
the exploitable machine states in a more complete fashion
and thus thoroughly pinpoint the set of contexts useful for
exploitation.

It should be noted that, as is depicted in Figure 4b,
symbolic execution under the context does not mean that
symbolically executing kernel code at the site of kernel
panic. Rather, it means that we perform symbolic execu-
tion right after the site of dangling pointer dereference.
As we will demonstrate and discuss in the following sec-
tion, such a design could prevent incurring path explosion
without reaching to any sites useful for exploitation. In
addition, it enables FUZE to use off-the-shelf constraint
solvers to accurately compute the content that needs to
spray in between the occurrence of a dangling pointer and
its dereference.

4 Design

In this section, we discuss the technical details of FUZE.
More specifically, we first describe how FUZE extracts
information needed for exploitation facilitation. Second,
we describe how FUZE utilizes this information to ini-
tialize running contexts, perform kernel fuzzing and thus
achieve context variation. Third, we specify how FUZE
performs symbolic execution, pinpoints exploitable ma-
chine states and thus accomplish context evaluation as
well as the computation for the data sprayed. Finally, we

Figure 5: A KASAN log obtained from kernel address sanitizer
as well as a kernel trace obtained through dynamic tracing.

discuss some limitations and other technical details.

4.1 Critical Information Extraction

As is mentioned above, FUZE takes as input a PoC pro-
gram. Then, it extracts information needed for consec-
utive exploitation by using an off-the-shelf kernel ad-
dress sanitizer KASAN [19] along with a dynamic tracing
mechanism. Here, we describe the information extracted
through kernel address sanitizer as well as the design of
the dynamic tracing mechanism, followed by how we
leverage them both to identify other critical information
for exploitation.
Information from Kernel Address Sanitizer. KASAN
is a kernel address sanitizer, which provides us with the
ability to obtain information pertaining to the vulnera-
bility. To be specific, these include (1) the base address
and size of a vulnerable object, (2) the program statement
pertaining to the free site left behind a dangling pointer
and (3) the program statement corresponding to the site
of dangling pointer dereference.
Design of Dynamic Tracing. In addition to the informa-
tion extracted through KASAN, consecutive exploitation
needs information pertaining to the execution of system
calls that trigger vulnerabilities. As a result, we design
a dynamic tracing mechanism to facilitate the ability of
extracting such information. To be specific, we first trace
the addresses of the memory allocated and freed in Linux
kernel as well as the process identifiers (PID) attached
to these memory management operations. In this way,
we could enable memory management tracing and asso-
ciate memory management operations to our target PoC
program. Second, we instrument the target PoC program



with the Linux kernel internal tracer (ftrace). This
could allow us to obtain the information pertaining to the
system calls invoked by the PoC program.
Other Critical Information Extraction. With the facil-
itation of dynamic tracing along with KASAN log, we can
extract other critical information needed for exploitation.
To illustrate the new information obtained through this
combination, we take for example the kernel trace and
KASAN log shown in Figure 5. Using the information ob-
tained through KASAN, we can easily identify the address
of the vulnerable object (0xffff88003280e600) and
tie it to the free operation indicated by kfree(). With
PID associated with each memory management opera-
tion, we can then pinpoint the life cycle of system calls on
the trace and thus identify close(), the system call tied
to the free operation.

Since system call socket() manifests as an incomplete
trace, we can easily pinpoint that it serves as the system
call that dereferences the dangling pointer. From the
KASAN log, we can also identify dev_add_pack+0x304

↪→ /0x310, the instruction that dereferences a dangling
pointer. Associating this information with debugging
information and source code, we can easily understand
how the dangling pointer was dereferenced and further
track down which variable this dangling pointer belongs
to.

4.2 Kernel Fuzzing

Recall that FUZE utilizes kernel fuzzing to explore other
system calls and thus diversifies running contexts for ex-
ploitation facilitation. In the following, we describe the
detail of our kernel fuzzing. To be specific, we first dis-
cuss how to initialize a context for fuzz testing. Then,
we describe how to set up kernel fuzzing for system call
exploration.

4.2.1 Fuzzing Context Initialization

As is mentioned in Section 3, we utilize kernel fuzzing
to identify system calls that also dereference a dangling
pointer. To do this, we must start kernel fuzzing after the
occurrence of a dangling pointer and, at the same time,
ensure the fuzz testing is not intervened by the pointer
dereference specified in the original PoC. As a result, we
need to first accurately pinpoint the site where a dangling
pointer occurs as well as the site where the pointer is deref-
erenced by the system call defined in the PoC program.
As is demonstrated above, this can be easily achieved
by using the information extracted through KASAN and
dynamic tracing.

With the two critical sites identified, our next step is to
eliminate the intervention of the system call that is speci-
fied in the original PoC and also capable of dereferencing

1 PoC_wrapper(){ // PoC wrapping function
2 ...
3 syscallA(...); // free site
4 return; // instrumented statement
5 syscallB(...); // dangling pointer

↪→ dereference site
6 ...
7 }

(a) Wrapped PoC program that encloses free and dangling
pointer dereference in two separated system calls without race
condition involvement.

1 PoC_wrapper(){ // PoC wrapping function
2 ...
3 while(true){ // Race condition
4 ...
5 threadA(...); // dangling pointer

↪→ dereference site
6 threadB(...); // free site
7 ...
8 // instrumented statements
9 if (!ioctl(...)) // interact with

↪→ a kernel module
10 return;
11 }
12 }

(b) Wrapped PoC program that encloses free and dangling
pointer dereference in two separated system calls with race
condition involvement.

Table 2: The wrapping functions preventing dangling pointer
dereference.

the dangling pointer. To do this, an intuitive approach
is to monitor memory management operations and then
intercept kernel execution so that it could redirect the ex-
ecution to the kernel fuzzing right after the occurrence
of a dangling pointer. Given the complexity of execu-
tion inside kernel, this intrusive approach however cannot
guarantee the correctness of kernel execution and even
makes the kernel experience an unexpected panic.

To address this technical problem, we design an alter-
native approach. To be specific, we wrap a PoC program
as a standalone function, and then instrument the function
so that it could be augmented with the ability to trigger a
free operation but refrain reaching to the site of dangling
pointer dereference. With this design, we could encapsu-
late initial context construction for kernel fuzzing without
jeopardizing the integrity of kernel execution.

Based on the practices of free operation and dangling
pointer dereference defined in a PoC program, we design
different strategies to instrument a PoC program (i. e., the
wrapping function). As is illustrated in Table 2a, for
a single thread PoC program with a free operation and
consecutive dereference occurring in two separated sys-
tem calls, we instrument the PoC program by inserting a
return statement in between the system calls because



1 pid = fork();
2 if (pid == 0)
3 PoC_wrapper(); // PoC wrapper

↪→ function running inside
↪→ namespaces

4 else
5 fuzz(); // kernel fuzzing

Table 3: The pseudo-code indicating the way of performing
concurrent kernel fuzz testing.

this could prevent the PoC itself entering the dangling
pointer dereference site defined in the PoC program. For
a multiple-thread PoC program, like the one shown in
Table 1, the dangling pointer could occur in the kernel
at any iteration. Therefore, our instrumentation for such
PoC programs inserts system call ioctl at the end of
the iteration. Along with a customized kernel module,
the system call examines the occurrence of the dangling
pointer and performs PoC redirection accordingly (see
Table 2b).
KASAN checks the occurrence of a dangling pointer at

the time of its dereference, and we need to terminate the
execution of a PoC before the dereference of a dangling
pointer. As a result, we cannot simply use KASAN to facil-
itate the ability of the kernel module to identify dangling
pointers.

To address this issue, we follow the procedure below.
From the information obtained from KASAN log, we first
retrieve the code statement pertaining to the dereference
of the dangling pointer. Second, we perform a data flow
analysis on the kernel source code to track down the vari-
able corresponding to the object freed but leaving behind a
dangling pointer. Since such a variable typically presents
as a global entity, we can easily obtain its memory address
from the binary image of the kernel code. By providing
the memory address to our kernel module, which moni-
tors the allocation and free operations in kernel memory,
we can augment the kernel module with the ability to
pinpoint the occurrence of the target object as well as
alert system call ioctl to redirect the execution of the
wrapping function to the consecutive kernel fuzzing.

4.2.2 Under-Context Kernel Fuzzing

To perform kernel fuzzing under the context initialized
above, we borrow a state-of-the-art kernel fuzzing frame-
work, which performs kernel fuzzing by using sequences
of system calls and mutating their arguments based on
branch coverage feedbacks. Considering an initial context
could represent different environment for triggering an

At the fuzzing stage, our objective is to identify system calls for
diversifying running contexts but not directly for generating exploitation.
Therefore, we disable kernel address randomization for reducing the
complexity of tracking down dangling pointers.

UAF vulnerability, we set up this kernel fuzzing frame-
work in two different approaches.

In our first approach, we start our kernel fuzzing right
after the fuzzing context initialization. Since we wrap
an instrumented PoC program as a standalone function,
this can be easily achieved by simply invoking the wrap-
ping function prior to the kernel fuzzing. In our second
approach, we set up the fuzzing framework to perform
concurrent fuzz testing. In Linux system, namespaces are
a kernel feature that not only isolates system resources of
a collection of processes but also restricts the system calls
that processes can run. For some kernel UAF vulnerabili-
ties, we observed that the free operation occurs only if we
invoke a system call in the Linux namespaces. In practice,
this naturally restricts the system call candidates that we
can select for kernel fuzzing. To address this issue, we
fork the PoC program prior to its execution and perform
kernel fuzzing only in the child process. To illustrate this,
we show a pseudo code sample in Figure 3. As we can
observe, the program creates two processes. One is run-
ning inside namespaces responsible for triggering a free
operation, while the other executes without the restriction
of system resources attempting to dereference the data in
the freed object.

In addition to setting up kernel fuzzing for different
initial contexts, we design two mechanisms to improve
the efficiency of the kernel fuzzing framework. First, we
escalate fuzzing efficiency by enabling parameter sharing
between the initial context and the fuzzing framework.
For kernel UAF vulnerabilities, their vulnerable objects
are typically associated with a file descriptor, an abstract
indicator used for accessing resources such as files, sock-
ets and devices. To expedite kernel fuzzing for hitting
these vulnerable objects, we set up the parameters of sys-
tem calls by using the file descriptor specified in the initial
fuzzing context.

Second, we expedite kernel fuzzing by reducing the
amount of system calls that the fuzzing framework has
to examine. In Linux system 4.10, for example, there
are about 291 system calls. They correspond to different
services provided by the kernel of the Linux system. To
identify the ones that can dereference a dangling pointer,
a straightforward approach is to perform fuzz testing
against all the system calls. It is obvious that this would
significantly downgrade the efficiency in finding the sys-
tem calls that are truly useful for exploitation facilitation.

To address this problem, we track down a vulnerable ob-
ject using the information obtained through the aforemen-
tioned vulnerability analysis. Then, we search this object
in all the kernel modules. For the modules that contain the
usage of the object, we retrieve the system calls involved
in the modules by looking up the SYSCALL_DEFINEx()

macros under the directory pertaining to the modules. In
addition, we include the system calls that belong to the



subclass same as the ones already retrieved but not present
in the modules. It should be noticed that this approach
might result in the missing of the system calls capable
of dereferencing dangling pointers. As we will show in
Section 6, this approach however does not jeopardize our
capability in finding system calls useful for exploitation.

4.3 Symbolic Execution

As is mentioned in Section 3.2, we perform symbolic
execution under the context with the goal of determining
whether a context could direct kernel execution to an ex-
ploitable machine state. In the following, we first describe
how to set up symbolic execution based on the context ob-
tained through the aforementioned kernel fuzzing. Then,
we discuss how to identify the machine states truly useful
for exploitation by using symbolic execution.

4.3.1 Symbolic Execution Setup

The random input fed into kernel fuzzing could potentially
crash kernel execution without providing useful primitives
for exploitation (e.g., writing arbitrary data to an arbitrary
address). As a result, we start our symbolic execution
right before the site where kernel fuzzing dereferences a
dangling pointer. To do this, we need to pinpoint the site
of dangling pointer dereference, pause kernel execution
and pass the running context to symbolic execution.

Different from kernel fuzzing, symbolic execution can-
not leverage kernel instrumentation to facilitate this pro-
cess. This is simply because we use symbolic execution
for exploit generation and the exploit derived from in-
strumented kernel cannot be effective in a plain Linux
system.

To address this issue, we utilize the information ob-
tained through KASAN and dynamic tracing. As is men-
tioned in Section 4.1, the information obtained carries the
code statement pertaining to the dereference of a dangling
pointer. Since this information represents in the source
code level, we can easily map it to the plain Linux system,
and set a breakpoint at that site.

This approach could guarantee to catch the occurrence
of a dangling pointer. However, the setup of the break-
point could intervene kernel execution even at the time
when the dangling pointer does not occur. This is because
the statement could also involve in regular kernel exe-
cution. To reduce unnecessary intervention, we design
FUZE to automatically retrieve the log obtained from the
aforementioned dynamic tracing, and then examine if the
pointer pertaining to the statement refers to an object that
has already been freed at time the execution reaches to
the breakpoint. We force the kernel to continue its exe-
cution if the freed object is not observed. Otherwise, we

pause kernel execution and use it as the initial setting for
consecutive symbolic execution.

4.3.2 Exploitable Machine State Identification

Starting from the initial setting, we create symbolic values
for each byte of the freed object. Then, we symbolically
resume kernel execution and explore machine states po-
tentially useful for vulnerability exploration. To identify
machine states exploitable, we define a set of primitives
indicating the operations needed for exploitation. Then,
we look up these primitives and take them as candidate
exploitable states while performing symbolic execution.

Since primitives represent only the operations generally
necessary for exploitation, but not reflect their capabil-
ity in facilitating exploitation, we further evaluate the
primitives guided by exploitation approaches commonly
adopted, and deem those passing the evaluation as our
exploitable states. In the following, we specify the primi-
tives that FUZE looks up and detail the way of performing
primitive evaluation.
Primitives Specification. We define two types of primi-
tives – control flow hijacking and invalid write. They are
commonly necessary for performing exploitation under a
certain assumption.

A control flow hijacking primitive describes a capability
that allows one to gain a control over a target destination.
To capture this primitive during symbolic execution, we
examine all indirect branching instructions and determine
whether a target address carries symbolic bytes (e.g., call
↪→ rax where rax carries a symbolic value). This is
because the symbolic value indicates the data we could
control and its occurrence in an indirect target implies our
control over the kernel execution.

An invalid write primitive represents an ability to ma-
nipulate a memory region. In practice, there are many
exploitation practices dependent upon this ability. To
identify this primitive during symbolic execution, we pay
attention to all the write instructions and check whether
the destination address or the source register or both carry
symbolic bytes (e.g., mov qword ptr [rdi], rsi where
both rdi and rsi contain symbolic values). The insight of
this primitive is that the symbolic value indicates the data
we could control and its occurrence in a source register
or a destination address or simultaneously both implies a
certain level of control over an memory area.
Primitive Evaluation. As is described above, it is still
unclear whether one could utilize the aforementioned
primitives to facilitate his exploitation. Given a control
flow hijacking primitive, for example, it may be still chal-
lenging for one to exploit an UAF vulnerability because of
the mitigation integrated in modern OSes (e.g., SMEP and
SMAP). To select primitives truly valuable for exploitation
(i. e., exploitable machine states), we evaluate primitives



as follows.
As is specified in [26], with SMEP enabled, an attacker

can use the following approach to bypass SMEP and thus
perform control flow hijacking. First, he needs to redirect
control flow to kernel gadget xchg eax, esp; ret. Then,
he needs to pivot the stack to user space by setting the
value of eax to an address in user space. Since the attacker
has the full control to the pivot stack, he could prepare an
ROP chain using the stack along with the instructions in
Linux kernel. In this way, the attacker does not execute
instructions residing in user space directly. Therefore,
he could fulfill a successful control flow hijack attack
without triggering SMEP.

In this work, we use this approach to guide the eval-
uation of primitives. At the site of the occurrence of a
control flow hijacking primitive, we retrieve the target
address pertaining to the primitive as well as the value in
register eax. Since the target address carries a symbolic
value, we check the constraint tied to the symbolic value
and examine whether the target could point to the address
of the aforementioned gadget. Then, we further exam-
ine if the value of eax is within range (0x10000, τ).
Here, (0x10000, τ) denotes the valid memory region.
0x10000 represent the end of an unmapped memory
region, and τ indicates the upper bound of the memory
region in user space.

Given SMEP enabled, another common approach [4]
for bypassing SMEP and performing control flow hijack-
ing is to leverage an invalid write to manipulate the meta-
data of the freed object. In this approach, one could
leverage this invalid manipulation to mislead memory
management to allocate a new object to the user space.
Since one could have the full control to the user space,
he could modify the data in the new object (e.g., a func-
tion pointer) and thus hijack the consecutive execution of
Linux kernel.

To leverage this alternative approach to guide our eval-
uation, we retrieve the source and destination pertaining
to each invalid write primitive. Then, we check the value
held in the destination. If that points to the metadata of
the freed object, we further inspect the constraint tied to
the source. We deem a primitive matches this alterna-
tive exploitation approach only if the source indicates a
valid user-space address or provides one with the ability
to change the metadata to an address in user space.

In addition to the approaches for bypassing SMEP, there
is a common approach [21] to bypass SMAP and perform
control flow hijacking. First, an attacker needs to set
register rdi to a pre-defined number (e.g., 0x6f0 in our
experiment). Then, he needs to redirect the control flow
to function native_write_cr4(). Since the function is
responsible for setting register CR4 – the 21st bit of which
controls the state of SMAP – and rdi is the argument of
this function specifying the new value of CR4, he could

disable SMAP and thus perform a control flow hijack at-
tack.

To use this approach to guide our primitive evaluation,
we examine each control flow hijacking primitive and
at the same time check the value in register rdi. To be
specific, we check the constraints tied to register rdi as
well as the target of the indirect branching instruction.
Then, we use a theorem solver to perform a computation
which could determine whether the target could point to
the address of native_write_cr4() and at the same time
rdi could equal to the pre-defined number.

It should be noticed that this work does not involve
leveraging information leak for bypassing KASLR and
acquiring the base address of kernel code segment. This
is because there have been already a rich collection of
works that could easily facilitate the acquirement of the
base address of kernel code segment (e.g., [12, 16]) and
the facilitation of information leak provided by FUZE
is neither a necessary nor a sufficient condition for suc-
cessful exploitation. In addition, it should be noted that
the symbolic execution applied above naturally provides
FUZE with the ability to compute the data that needs to be
sprayed to the freed object. In this work, we therefore uti-
lize off-the-shelf constraint solver (i. e., SMT) to compute
values for all the symbolic variables while the symbolic
exploration reaches to the machine states exploitable.

4.4 Technical Discussion

Here, we discuss some technical limitations and other
design details related to kernel fuzzing and symbolic exe-
cution.
Symbolic address. When symbolically executing instruc-
tions in Linux kernel for exploitable state exploration, the
symbolic execution might encounter an uncertainty where
an instruction accesses an address indicated by a sym-
bolic value. Without a concretization to the symbolic
value, the symbolic address could block the execution
without providing us with primitives useful for exploita-
tion. To address this issue, our design concretizes the
symbolic value with a valid user-space address carrying
the content to which we have the complete control.

With this design, it is not difficult to note that, crafting
an exploit with the symbolic address involved, one would
have the difficulty in bypassing SMAP because an access
to the user space is a clear violation to the protection of
user-space read and write. However, as we will demon-
strate in Section 6, in practice, this does not jeopardize the
effectiveness of FUZE in bypassing security mitigation.
This is because FUZE has the ability to identify useful
primitives through different execution paths which do not
involve symbolic addresses.
Entangled Free and dereference. Recall that FUZE
performs under-context fuzzing and diversifies contexts



based on the practice of how a PoC program performs
object free and dereference ( see the two different ap-
proaches in Table 3). In practice, a PoC might utilize a
single system call to perform object free and its derefer-
ence. For cases following this practice, FUZE uses sym-
bolic execution for exploitable state exploration but not
performs kernel fuzzing. This is simply because we can-
not eliminate the intervention of the consecutive derefer-
ence after a dangling pointer occurs, and the time window
left for fuzzing is relatively short. While such a design
limits the context that we can explore, it does not signif-
icantly influence the utility of FUZE. As we will show
in Section 6, FUZE still provides us with the facilitation
for UAF exploitation even if there is only one context for
exploration.

5 Implementation

We have implemented a prototype of FUZE which con-
sists of three major components – ¶ dynamic tracing, ·
kernel fuzzing and ¸ symbolic execution. To perform
exploration for vulnerability exploitability, FUZE takes a
64-bit Linux system vulnerable to UAF exploitation and
runs it on QEMU emulator with KVM enabled. In this sec-
tion, we present some important implementation details.
Dynamic tracing. To track down system calls as
well as memory management operations in Linux
kernel, we used ftrace to record information
related to the memory allocation and free such
as kmalloc(), kmem_cache_allocate(), kfree() and
kmem_cache_free() etc.

Since Linux kernel might utilize RCU, a synchroniza-
tion mechanism, to free an object, which could potentially
fail our dynamic tracing to pinpoint a dangling pointer at
the right site, we also force our dynamic tracing compo-
nent to invoke sleep(). To be specific, our implementa-
tion inserts function sleep() right after the system call
responsible for free operations, particularly for the PoC
programs where free and dereference operations are sepa-
rated in two different system calls but not introduce a race
condition. For the PoC programs which trigger dangling
pointers through a race condition (e.g., the PoC program
shown in Table 1), we insert function sleep() at the end
of each iteration.
Kernel fuzzing. As is described in Section 4.2, we need
to identify candidate system calls potentially useful for
exploitation using kernel fuzzing. To do this, we can uti-
lize syzkaller [2], an unsupervised coverage-guided
kernel fuzzer. However, syzkaller defines and sum-
marizes only a limited set of system calls specified in
sys/linux/*.txt. Considering this set may not include
the system calls which we have to perform fuzz testing
against, our implementation complements declarative de-
scription for 16 system calls (see Appendix).

In addition, we augmented syzkaller with the abil-
ity to distinguish the kernel panics that are truly attributed
to the system calls used by syzkaller. When per-
forming kernel fuzzing, we expect the system calls used
by syzkaller could dereference a dangling pointer
and thus obtain a new running context for consecutive
exploitation. However, it is possible that a dangling
pointer is dereferenced by other processes and result in
kernel panics. To address this, our implementation ex-
tends syzkaller to check the kernel panic based on
the process ID as well as the process name.
Symbolic execution. We developed our symbolic ex-
ecution component by using angr [1], a binary anal-
ysis framework. To enable it to symbolically execute
Linux kernel, we first take a kernel snapshot right be-
fore dangling pointer dereference. Then, we use the
QEMU console interface to retrieve current register val-
ues, kernel code section and the page where the vulner-
able object resides. Considering the symbolic execution
might request the access to a page not loaded as the in-
put to angr in its consecutive execution, we also detect
uninitialized memory access by hooking the operations
of angr (e.g., mem_read, mem_write) and migrate target
pages based on the demand of symbolic execution with
a broker agent. Last but not least, we extended angr to
deal with symbolic address issues by adding concretiza-
tion strategy classes.

6 Case Study

In this section, we demonstrate the utility of FUZE using
real-world kernel UAF vulnerabilities. More specifically,
we present the effectiveness and efficiency of FUZE in
exploitation facilitation. In addition, we discuss those ker-
nel UAF vulnerabilities, the exploitation of which FUZE
fails to provide with facilitation.

6.1 Setup
To demonstrate the utility of FUZE, we exhaustively
searched Linux kernel UAF vulnerabilities archived
across the past 5 years. We excluded the UAF vulner-
abilities that tie to special hardware devices to experiment
as well as those that we failed to discover PoC programs
corresponding to the CVEs. In total, we obtained a dataset
with 15 kernel UAF vulnerabilities residing in various ver-
sions of Linux kernels. We show these vulnerabilities in
Table 4.

Recall that FUZE needs to perform fuzzing and sym-
bolic execution in two different settings. For each Linux
kernel corresponding to the CVE selected, we therefore
enabled debug information and compiled it in two differ-
ent manners – with and without KASAN and KCOV en-
abled. For some vulnerabilities, we also migrate UAF vul-



CVE-ID # of public exploits # of generated exploits
SMEP SMAP SMEP SMAP

2017-17053 0 0 1 0
2017-15649 0 0 3 2
2017-15265 0 0 0 0
2017-10661 0 0 2 0
2017-8890 1 0 1 0
2017-8824 0 0 2 2
2017-7374 0 0 0 0

2016-10150 0 0 1 0
2016-8655 1 1 1 1
2016-7117 0 0 0 0
2016-4557 1 1 4 0
2016-0728 1 0 3 0
2015-3636 0 0 0 0
2014-2851 1 0 1 0
2013-7446 0 0 0 0

Overall 5 2 19 5

Table 4: Exploitability comparison with and without FUZE.

CVE-ID Fuzzing Symbolic Execution
Time # of

syscalls
Min #
of BBL

Max #
of BBL

Ave #
of BBL

2017-17053 NA NA 6 18 13
2017-15649 26 m 433 4 39 21
2017-15265 NA NA 4 5 5
2017-10661 2 m 26 7 14 11
2017-8890 139 m 448 13 86 48
2017-8824 99 m 63 2 33 23
2017-7374 NA NA NA NA NA

2016-10150 NA NA 1 1 1
2016-8655 1m 448 4 27 14
2016-7117 NA NA 1 1 1
2016-4557 1 m 133 3 48 29
2016-0728 1 m 7 21 31 26
2015-3636 NA NA NA NA NA
2014-2851 146 m 1203 1 5 3
2013-7446 209 m 448 1 2 1

Table 5: The Efficiency of fuzzing and symbolic execution.

nerabilities from the target version of a Linux kernel to a
newer version by reversing the corresponding patch in the
newer version of the Linux kernel. This is because some
obsolete Linux kernels are not compatible to KASAN. As
is mentioned in Section 4.3, the address space layout ran-
domization is out of the scope of this work. Last but
not least, we therefore disabled CONFIG_RANDOMIZE_BASE

option in all Linux kernels that we experiment.

Regarding the configuration of FUZE, we performed
kernel fuzzing and symbolic execution using a machine
with Intel(R) Xeon(R) CPU E5-2630 v3 2.40GHz CPU
and 256GB of memory. We limited our kernel fuzzing
to operate for 12 hours with 4 instances, and fine-tuned
our symbolic execution as follows. First, we restricted the
maximum number of basic blocks on a single path to be
less than 200. Second, we performed symbolic execution
only for 5 minutes. Last but not least, for loops, we set
symbolic execution to perform iterations for at most 10
times. With this setup, we could prevent the explosion of
our symbolic execution.

To showcase FUZE can truly benefit the exploita-
tion, we performed end-to-end exploitation using the ex-
ploitable machine states we identified. To be specific,
we computed the data that needs to be sprayed based on
the constraints tied to the exploitable states. Then, we
performed the heap spray with three different system calls
– add_key(), msgsnd(), sendmsg() – by following the
techniques introduced in [33]. To fulfill exploitation us-
ing the exploitable states identified, we eventually redirect
the execution to an ROP chain [26] commonly used for
exploitation. To illustrate the exploits generated through
the facilitation of FUZE, we have released some example
exploits along with the virtual machine at [3].

6.2 Effectiveness

Table 4 specifies the amount of distinct exploits publicly
available for each kernel UAF vulnerability as well as
their capability of bypassing mitigation mechanisms com-
monly adopted (i. e., SMEP and SMAP). We use this as
our baseline to compare with exploits generated under the
facilitation of FUZE. We show this comparison side-by-
side in Table 4.

With regard to the ability to perform exploitation and
bypass SMEP illustrated in Table 4, we first observe that
there are only 5 publicly available exploits capable of
bypassing SMEP whereas FUZE enables exploitation and
SMEP-bypassing for 5 additional vulnerabilities. This
indicates the facilitation of FUZE could not only signif-
icantly improve possibility of generating exploits but,
more importantly, escalate the capability of a security
analyst (or an attacker) in bypassing security mitigation.

For all the vulnerabilities that an attacker could exploit
and bypass SMEP, we also observe a significant increase
in the amount of unique exploits capable of bypassing
SMEP. This indicates that our kernel fuzzing could diver-
sify the running contexts and thus facilitate our symbolic
execution to identify machine states useful for exploita-
tion. It should be noticed that we count the amount of
distinct exploits shown in Table 4 based on the number
of contexts capable of facilitating exploitation but not the
exploitable states we pinpointed. This means that, the ex-
ploits crafted for the same UAF vulnerability all utilizes
different system calls to perform control flow hijacking
and mitigation bypassing.

Regarding the capability of disabling SMAP shown
in Table 4, we discovered only 2 exploits publicly
available and capable of bypassing SMAP. They attach
to 2 different vulnerabilities – CVE-2016-8655 and



CVE-2016-4557. Using FUZE to facilitate exploit
generation, we observe that FUZE could enable and di-
versify exploitation as well as SMAP-bypassing for 2
additional vulnerabilities (see CVE-2017-8824 and
CVE-2017-15649 in Table 4). In addition, we no-
tice that FUZE fails to facilitate SMAP-bypassing for
CVE-2016-4557 even though a public exploit has al-
ready demonstrated its ability to perform exploitation and
bypass SMAP. This is for the following reason. As is
described in Section 4.3, FUZE explores exploitability
through control flow hijacking. For some exploitation
such as privilege escalation, control flow hijacking is not
a necessary condition. In this case, the exploit publicly
available performs privilege escalation which bypasses
SMAP without leveraging control flow hijacking.

In addition to the ability of bypassing mitigation and di-
versifying exploits, Table 4 reveals the capability of FUZE
in facilitating exploitability. As we will discuss in the fol-
lowing session, there are 4 kernel UAF vulnerabilities
for which FUZE cannot perform fuzzing because the PoC
programs obtained all perform free and dereference oper-
ations in the same system call. However, we observe that
FUZE can still facilitate exploit generation particularly
for the vulnerabilities tied to CVE-2017-17053 and
CVE-2016-10150. This is for the following reason.
Kernel fuzzing is used for diversifying running contexts.
Without its facilitation, FUZE only performs symbolic
execution and explores machine states exploitable under
the context tied to the PoC program. For the two vul-
nerabilities above, their running contexts attached to the
PoC programs have already carried valuable primitives,
which symbolic execution could track down and expose
for exploit generation.

Last but not least, Table 4 also specifies some cases
which FUZE fails to facilitate exploitation. However,
this does not imply the ineffectiveness of FUZE. For the
case tied to CVE-2015-3636, the vulnerability can be
triggered only in the 32-bit Linux system, in which the
Linux kernel has to access a fixed address defined by
marco LIST_POISON prior to an invalid free. In a 64-
bit Linux system on an x86 machine, this address is un-
mappable and thus this vulnerability cannot be triggered.
For the case tied to CVE-2017-7374, the NVD web-
site [10] categorizes it into a kernel UAF vulnerability.
After carefully investigating the PoC program and ana-
lyzing the root cause of this vulnerability, we discovered
that the root cause behind this vulnerability is actually a
null pointer dereference. In other words, the vulnerability
could make kernel panic only at the time when a system
call dereferences a null pointer. Up until the submission
of this work, for the cases tied to CVE-2013-7446,
CVE-2017-15265 and CVE-2016-7117, both ex-
haustive search and FUZE have not yet discovered any
exploits indicating their ability to perform exploitation.

This is presumably because these vulnerabilities could
result in only a Denial-of-Service to the target system or
they could be exploitable only in support of other vulner-
abilities.

6.3 Efficiency

Table 5 specifies the time spent on identifying the first
context capable of facilitating exploitation or, in other
words, the context from which the consecutive symbolic
execution could successfully track down an exploitable
machine state. We observe that FUZE could perform
fuzz testing against 9 vulnerabilities. For all of them,
FUZE could pinpoint a valuable context within about 200
minutes, which indicates a relatively high efficiency in
supporting exploit generation. For the rest cases, there
are mainly two reasons behind the failure of our fuzz
testing. First, our kernel fuzzing has to start after the oc-
currence of a dangling pointer. However, for the case tied
to CVE-2015-3636, the invalid free operation cannot
be triggered in 64-bit Linux kernel. Second, for the other
4 cases, the free and dereference are entangled in the same
system call. As is mentioned in Section 4.4, this practice
leaves a short time frame for kernel fuzzing, and FUZE
performs only symbolic execution.

To perform kernel fuzzing in a more efficient manner,
syzkaller customizes these system calls and extends
their amount to 1,203. As is mentioned in Section 4.2,
we trim the set of system calls that FUZE has to explore
for the purpose of improving the efficiency of FUZE. In
Table 5, we show the amount of system calls that FUZE
has to explore during 12-hour kernel fuzzing. For all the
cases except for that tied to CVE-2014-2851, we can
easily observe that FUZE cut more than 60% of system
calls. Among them, there are approximately half of the
cases, for which kernel fuzzing needs to explore only
about 100 system calls. This implies the contribution to
the efficiency in exploitation facilitation.

In addition to the efficiency of kernel fuzzing, Table 5
demonstrates the performance of symbolic execution.
More specifically, the table shows the minimum, max-
imum and average length of the path from a dangling
pointer dereference site to a control flow hijacking or
an invalid write primitive. Across all cases except for
CVE-2015-3636 – which we cannot trigger a UAF vul-
nerability in a 64-bit Linux system – we observe that the
maximum number of basic blocks on a path is 86. This
indicates primitives usually occur at the site close to dan-
gling pointer dereference. By setting symbolic execution
to explore exploitable machine states within a maximum
depth of 200 basic blocks, we could not only ensure the
identification of exploitable states but also reduce the risk
of experiencing path explosion.



7 Related Work

As is described above, our work could expedite the ex-
ploit generation for kernel UAF vulnerabilities as well
as facilitate the ability of circumventing security mitiga-
tion in OS kernel. As a result, the works most relevant
to ours include those facilitating the ability of bypassing
widely-deployed security mechanisms as well as those
automating the generation of exploits for a vulnerability
known previously. In the following, we describe the exist-
ing works in these two types and discuss their limitations.
Bypassing mitigation. There is a body of work that in-
vestigates approaches of bypassing security mitigation
in OS kernel with the goal of empowering exploitability
of a kernel vulnerability. Typically, these work can be
categorized into two major types – circumventing Kernel
Address Space Layout Randomization (KASLR) and by-
passing Supervisor Mode Execution / Access Prevention
(SMEP / SMAP). It should be noticed that we do not dis-
cuss techniques for circumventing other kernel security
mechanisms (e.g., PaX / Grsecurity [27]) simply because
– for the performance concern – they are typically not
widely deployed in modern OSes.

Regarding the approaches of bypassing KASLR, a ma-
jority of research works focus on leveraging side-channel
to infer memory layout in OS kernel. For example,
Hund et al. [15] demonstrate a timing side channel at-
tack that infers kernel memory layout by exploiting the
memory management system; Evtyushkin et al. [11]
propose a side channel attack which identifies the loca-
tions of known branch instructions and thus infers kernel
memory layout by creating branch target buffer collision;
Gruss et al. [12] infer kernel address information by ex-
ploiting prefetch instructions; Lipp et al. [22] leak kernel
memory layout by exploiting the speculative execution
feature introduced by modern CPUs. In this work, we
do not focus on expediting exploitation by facilitating
bypassing KASLR. Rather, we facilitate exploitation from
the aspects of crafting exploits and bypassing SMEP and
SMAP.

With regards to circumventing SMEP and SMAP, there
are two lines of approaches commonly used. One is to
utilize Return-Oriented Programming (ROP) to disable
SMEP [18, 26] or SMAP [21], while the other is to lever-
age implicit page frame sharing to project user-space data
into kernel address space so that one could run shellcode
residing in user memory without being interrupted by
SMEP or SMAP [20]. In this work, we follow the first line
of approach to facilitate the ability of bypassing SMEP
and SMAP. Different from the existing approaches in this
type, however, we focus on exploring various system calls
to facilitate the construction of an ROP chain. This is be-
cause chaining disjoint gadgets in OS kernel for bypassing
SMEP and SMAP needs to explore the abilities of different

system calls, which typically requires significant domain
expertises and manual efforts.

Generating exploits. There is a rich collection of re-
search works on facilitating exploit generation. To as-
sist with the process of finding the right object to take
over the memory region left behind by an invalid free
operation, Xu et al. [33] propose two memory collision
attacks – one employing the memory recycling mech-
anism residing in kernel allocator and the other taking
advantage of the overlap between the physmap and the
SLAB caches. To be able to control the data on a kernel
stack and thus facilitate the exploitation of Use-Before-
Initialization, Lu et al. [23] propose a targeted spraying
mechanism which includes a deterministic stack spray-
ing approach as well as an exhaustive memory spraying
technique. To reduce the effort of crafting shellcode for
exploitation, Bao et al. [7] develop ShellSwap which
utilizes symbolic tracing along with a combination of
shellcode layout remediation and path kneading to trans-
plant shellcode from one exploit to another. To expedite
the process of crafting an exploit to perform Data Oriented
Programming (DOP) attacks, Hu et al. [14] introduce an
automated technique to identify data oriented gadgets and
chain those disjoint gadgets in an expected order.

In addition to the aforementioned techniques, the past
research explores fully automated exploit generation tech-
niques. In [5] and [9], Brumley et al. explore auto-
matic exploit generation for stack overflow and format
string vulnerabilities using preconditioned symbolic ex-
ecution and concolic execution, respectively. In [25],
Mothe et al. utilize forward and backward taint analy-
sis to craft working exploits for simple vulnerabilities
in user-mode applications. In [29], Repel et al. make
use of symbolic execution to generate exploits for heap
overflow vulnerabilities residing in user-mode applica-
tions. In [30–32], Shellphish team introduces two sys-
tems (PovFuzzer and Rex) to turn a crash to a working
exploit. For PovFuzzer, it repeatedly subtly mutates
input to a vulnerable binary and observes relationship
between a crash and the input. For Rex, it symbolically
executes the input with the goal of jumping to shellcode
or performing an ROP attack.

In comparison with the exploit generation techniques
mentioned above, the uniqueness of our work is mainly
manifested in three aspects. First, our technique facilitates
exploiting kernel UAF vulnerabilities which have higher
complexity than other vulnerabilities. Second, our tech-
nique facilitates kernel UAF exploitation at the stage of
exploit crafting and mitigation bypassing. Third, as is dis-
cussed in earlier sections, our proposed techniques could
explore different running contexts, which is essential for
the success of kernel UAF exploitation.



8 Conclusion

In this paper, we demonstrate that it is generally chal-
lenging to craft an exploit for a kernel UAF vulnerability.
While there are a rich collection of works exploring auto-
matic exploit generation, they can barely be useful for this
task because of the complexity of UAF and scalability of
kernel code. We proposed FUZE, an effective framework
to facilitate exploitation of kernel UAF vulnerabilities.
We show that FUZE could explore OS kernel and iden-
tify various system calls essential for exploiting an UAF
vulnerability and bypassing security mitigation.

We demonstrated the utility of FUZE, using 15 real-
world kernel UAF vulnerabilities. We showed that FUZE
could provide security analysts with an ability to expedite
exploit generation for kernel UAF vulnerabilities, and
even facilitate the ability of bypassing widely deployed
security mitigation mechanisms built in modern OSes.
Following this finding, we safely conclude that, from
the perspective of security analysts, FUZE can signifi-
cantly facilitate the exploitability evaluation for kernel
UAF vulnerabilities. As future work, we will extend
this exploitation framework to perform end-to-end ex-
ploitation without the intervention of manual efforts. In
addition, we will explore more primitives for exploitation
facilitation.
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Appendix

A Extended System Calls in Syzkaller

1 dccp_level_option = SOL_SOCKET,
↪→ SOL_DCCP

2 getsockopt$inet_dccp_int(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

3 setsockopt$Inet_dccp_int(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

4 getsockopt$inet6_dccp_int(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

5 setsockopt$Inet6_dccp_int(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_int], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

6 getsockopt$inet_dccp_buf(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

7 setsockopt$Inet_dccp_buf(fd sock_dccp,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[in, int32], optlen len[optval
↪→ ])

8 getsockopt$inet6_dccp_buf(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
↪→ ptr[out, int32], optlen ptr[inout
↪→ , len[optval, int32]])

9 setsockopt$Inet6_dccp_buf(fd sock_dccp6,
↪→ level flags[dccp_level_option],
↪→ optname flags[
↪→ dccp_option_types_buf], optval
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↪→ ptr[in, int32], optlen len[optval
↪→ ])

10 settimeofday(tv ptr[in, timeval], tz
↪→ ptr[in, timezone])

11 gettimeofday(tv ptr[in, timeval], tz
↪→ ptr[in, timezone])

12 timezone {
13 tz_minuteswest int32
14 tz_dsttime int32
15 }
16 resource sock_vsock_stream[sock_vsock]
17 socket$stream(domain const[AF_VSOCK],

↪→ type const[SOCK_STREAM], proto
↪→ const[0]) sock_vsock_stream

18 adjtimex(buf ptr[in, timex])
19 timex {
20 modes int32
21 offset int64
22 freq int64
23 maxerror int64
24 esterror int64
25 status int64
26 constant int64
27 precision int64
28 tolerance int64
29 time timeval
30 tick int64
31 ppsfreq int64
32 jitter int64
33 shift int32
34 stabil int64
35 jitcnt int64
36 calcnt int64
37 errcnt int64
38 stbcnt int64
39 tai int32
40 }
41 sethostname(name ptr[inout, string["foo

↪→ "]], len const[3])
42 socket$key(domain const[AF_KEY], type

↪→ const[SOCK_RAW], proto const[
↪→ PF_KEY_V2]) sock

43 sendmsg$key(fd sock, msg ptr[in,
↪→ send_msghdr_key], f flags[
↪→ send_flags])

44 sendmmsg$key(fd sock, mmsg ptr[in,
↪→ array[send_msghdr_key], vlen len[
↪→ mmsg], f flags[send_flags]])

45 send_msghdr_key {
46 msg_name ptr[in, sockaddr_storage,

↪→ opt]
47 msg_namelen len[msg_name, int32]
48 msg_iov ptr[in, iovec_sadb_msg]
49 msg_iovlen len[msg_iov, intptr]
50 msg_control ptr[in, array[cmsghdr]]
51 msg_controllen len[msg_control,

↪→ intptr]
52 msg_flags flags[send_flags, int32]
53 }
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