
KEPLER: Facilitating Control-flow Hijacking Primitive Evaluation
for Linux Kernel Vulnerabilities

Wei Wu1,2,3?, Yueqi Chen2, Xinyu Xing2, and Wei Zou1,3

1{CAS-KLONAT†, BKLONSPT‡}, Institute of Information Engineering, Chinese Academy of Sciences, China
2College of Information Sciences and Technology, Pennsylvania State University, USA

3School of Cyber Security, University of Chinese Academy of Sciences, China
{wuwei, zouwei}@iie.ac.cn, {yxc431, xxing}@ist.psu.edu

Abstract
Automatic exploit generation is a challenging problem. A

challenging part of the task is to connect an identified ex-
ploitable state (exploit primitive) to trigger execution of code-
reuse (e.g., ROP) payload. A control-flow hijacking primi-
tive is one of the most common capabilities for exploitation.
However, due to the challenges of widely deployed exploit
mitigations, pitfalls along an exploit path, and ill-suited prim-
itives, it is difficult to even manually craft an exploit with a
control-flow hijacking primitive for an off-the-shelf modern
Linux kernel. We propose KEPLER to facilitate exploit gener-
ation by automatically generating a “single-shot” exploitation
chain. KEPLER accepts as input a control-flow hijacking prim-
itive and bootstraps any kernel ROP payload by symbolically
stitching an exploit chain taking advantage of prevalent ker-
nel coding style and corresponding gadgets. Comparisons
with previous automatic exploit generation techniques and
previous kernel exploit techniques show KEPLER effectively
facilitates evaluation of control-flow hijacking primitives in
the Linux kernel.

1 Introduction

Software bugs may have extremely serious consequences,
especially for the OS kernel, where they could be fatal to
the reliability and security of the entire OS because of the
higher privilege that the kernel resides in and the abundance
of hardware resources that the kernel has direct control of.
Kernel bugs can lead to data leakage, privilege escalation
and even persistant attacks [33]. One straightforward solution
to minimize consequences of kernel bugs is to immediately
patch all of the kernel bugs reported via mail lists and kernel
fuzzers [72] [58] [52] [37]. In practice, considering the lack
of manpower to patch all bugs timely, vendors typically prior-
itize their efforts to patch the bugs with more severe security

?The main part of the work was done while studying at Pennsylvania
State University.

†Key Laboratory of Network Assessment Technology, CAS
‡Beijing Key Laboratory of Network Security and Protection Technology

implications after assessing their exploitability. With the de-
ployment of various kernel mitigations, the exploitability of
bugs has been obviously weakened but still hard to decide.
Despite the undecidability of the general exploitability prob-
lem, sometimes a carefully crafted exploit could serve as a
constructive proof of exploitability.

Capable of proving exploitability by generating working
exploits from a vulnerability Proof-of-Concepts (PoC), auto-
matic exploit generation is a preferred choice for exploitability
assessment because its soundness and efficiency [7] [3] [9]
[64] [5] [55] [30] [75]. More importantly, automatically gen-
erating concrete exploits could not only help exploitability
evaluation, but also let a user to gain advantages in adversarial
settings (e.g. Capture-The-Flag competitions) by scoring fast.
Last but not least, these generated exploits could potentially
help defender-side to evaluate the effectiveness of proposals
of new kernel mitigation.

The common workflow of automatic exploit generation
systems are similar. In general we can divide them into the
following two steps: ¶exploit primitive identification and
·exploit primitive evaluation. In the first step, they search
for pre-defined exploit primitive (“exploitable” states) based
on the crashing path triggered by a PoC input. In the sec-
ond step, after pinpointing an exploit primitive, they add ex-
ploit constraints and perform constraint solving to generate
a concrete input to exercise a predefined exploit technique
(e.g., ret2libc attack).

However, in order to generate working exploit for a control-
flow hijacking primitive, there remains to be the following
three challenges in the process of exploit primitive evaluation
which limits the capability of automatic exploit generation
techniques to target a complex real-world system such as the
Linux kernel.

Challenge 1, exploit mitigation. Exploit mitigations are
designed and introduced to reduce attack surface and raise
the bar of exploitation. For a modern Linux kernel, many
new hardware features [38] [11], compiler-assisted instrumen-
tation [22] [40], sensitive data objects protection [12] [65]
[21] [13] and virtualization-based hypervisor [49] [51] have

been introduced as exploit mitigations. As a consequence,
many kernel exploit techniques are no longer effective [36]
[61] [41] [39] [77], despite the fact that heavier enforcement
such as control-flow integrity (CFI) [2] [16] [79] [78] is still
not widely-adopted by major Linux releases perhaps due to
performance concerns.

Challenge 2, exploit path pitfall. Side effects of exploit
primitives could terminate exploitation in middle. Memory
corruption, occurred along with an exploit primitive, can frus-
trate the attempt to trigger the primitive the second time, be-
cause an exploit path could unavoidably contain instructions
triggering an unexpected termination of exploitation. Such
termination can be a kernel panic of invalid memory access
or an infinite loop in a kernel thread.

Challenge 3, ill-suited exploit primitive. Lack of stack piv-
oting gadget [54] which is a vital step to perform ROP attack
and insufficient control over general registers can make an
exploit primitive ill-suited. Although some strong primitives
have been proven exploitable and even Turing complete [35],
there is still a gap between ill-suited exploit primitive and the
requirement of mounting a certain exploit technique.

Considering the three challenges, it could be quite diffi-
cult to even manually craft an exploit with a control flow
hijack primitive. To address the above challenges, we propose
KEPLER, an exploit primitive evaluation framework for real-
world Linux kernel vulnerabilities. KEPLER employs a novel
exploit technique designed for Linux kernel which reduces ex-
ploitation of a control-flow hijacking primitive to constructing
a classical overflow in kernel stack. The exploit technique ex-
poses less constraints over the quality of an exploit primitive
and availability of stack pivoting gadget than previous exploit
techniques and could still bypass currently widely deployed
kernel mitigations while previous approches could not. Start-
ing from a possibly ill-suited control-flow hijacking primitive
(CFHP), KEPLER overcomes the lack of stack pivoting gadget
and manages to build a "single-shot" exploitation chain to
bootstrap existing Turing complete exploit techniques such
as return oriented programming (ROP) [56], with the ability
to bypass mainstream kernel mitigations as well as detouring
exploit path pitfalls.

To achieve this, KEPLER leverages a carefully designed
code-reuse template for control-flow hijacking primitives to
bypass widely-deployed mitigations in Linux kernel. KE-
PLER first enhances an exploit primitive to satisfy a minimal
requirement of controlling dual registers (e.g., rip and rdi
for x86-64) at the same time. Starting from the primitive,
KEPLER generates an exploit which sequentially executes a
chain of five gadgets. The design of the code-reuse template
involves several insights about Linux kernel coding style.
Specifically, KEPLER reuses those stack-based invocations of
kernel I/O channel functions to leak and smash kernel stack of
current process and execute arbitrary user-supplied ROP pay-
load. KEPLER leverages blooming gadget to enhance control
over necessary registers for a control-flow hijacking primitive.

KEPLER uses a bridging gadget to combine the practice of
leaking kernel stack canary and smashing kernel stack into a
single shot and thus prevent unexpected kernel panic.

To generate exploits for each CFHP against arbitrary kernel
binary, KEPLER operates in the following two phase: first, KE-
PLER statically analyzes the kernel binary for five categories
of candidate gadgets. Then KEPLER starts kernel symbolic
execution from the CFHP, and performs a Depth First Search
(DFS) based gadget stitching algorithm over candidate gad-
gets.

Our evaluation of KEPLER shows that it is powerful for
exploit primitive evaluation. To highlight the effectiveness
of KEPLER, we compare KEPLER with existing exploit hard-
ening/generation tools (e.g., Q [60], fuze [75]) and KEPLER
outperforms all of them in terms of generating effective kernel
exploits under modern mitigation settings in Linux kernel.

This research work makes the following contribution:

• Kernel single-shot exploitation. We present a code-
reuse exploit technique which converts a single ill-suited
control-flow hijacking primitive into arbitrary ROP pay-
load execution under various constraints posed by mod-
ern Linux kernel mitigations and the primitive itself.
The proposed technique exploits prevalent kernel cod-
ing style and corresponding gadgets and thus is hard to
defeat. Our approach to calculate exploit chain is au-
tomatable because the gadget stitching problem could be
cast as a search problem over a search space of reason-
able size. In addition, the "single-shot"1 nature of this
technique makes it suitable for the vulnerabilities prone
to unexpected termination because it avoids stressing a
control-flow hijacking primitive for multiple times.

• Semi-automatic exploit generator for Linux kernel.
We implement KEPLER using a set of tools including
IDA SDK, QEMU/KVM and angr. Starting from a user-
supplied control flow hijack primitive, KEPLER analyzes
the Linux kernel binary, tracks down useful kernel gad-
gets, and automatically generates many gadget chains
for launching "single-shot" exploitation and bypassing
kernel mitigations. It requires no kernel source code
and can be applied to stripped kernel images. KEPLER
applies to modern Linux kernels; our evaluation uses
version 4.15.0 which was the latest as of the time of our
evaluation.

• Practical impacts. We systematically evaluate the effec-
tiveness and efficiency of KEPLER using 16 real-world
kernel vulnerabilities and 3 recently-released CTF chal-
lenges. Given a kernel control-flow hijacking primitive,
we show that KEPLER generally could generate tens of

1The proposed exploit technique requires a lot of analysis effort, but with
respect to the precondition for launching the attack, it requires only a single
control-flow hijacking primitive.

thousands of distinct exploitation chains with the abil-
ity to bypass kernel mitigations and perform successful
exploitation. We show that KEPLER can output the first
working exploit for a kernel vulnerability in less than
about 50 wall-clock minutes.

2 Background and Related Work

Exploit primitives [6] [47] [55] are machine states that violate
security policies at various level and indicate an attacker could
get extra capabilities beyond the normal functionality pro-
vided by the original program. A control-flow hijacking
primitive (CFHP) is a machine state that potentially deviates
from the legal control-flow graph. In the context of sym-
bolic analysis, a control-flow hijacking primitive is usually
identified by applying a heuristic which queries the backend
constraint solver to check whether the number of possible
control flow jump target is beyond a threshold when the con-
trol flow jump target contains symbolic bytes. An arbitrary
memory write primitive is a machine state that an attacker
could modify arbitrary kernel memory on his will. Similarly,
an arbitrary memory leak primitive is a machine state which
allows an attacker to dump data content at arbitrary kernel
address. Sometimes the primitive does not allow an attacker
to modify/leak data at arbitray kernel address (e.g., a stack
info leak which only dump several bytes on kernel stack [68]),
they are referred as restricted memory write/leak primitive.

As is described above, this research work mainly focuses
on two aspects – ¶ facilitating exploit primitive evaluation
for even ill-suited exploit primitives and bypassing widely-
deployed kernel mitigation mechanisms by designing a new
exploit technique. · developing a tool to automate the newly
proposed kernel exploitation approach. As a result, the works
most relevant to ours include those pertaining to exploit prim-
itive identification, exploit primitive evaluation and kernel
exploit techniques/mitigations. In the following, we describe
the existing works in these three directions and discuss their
difference from ours.

2.1 Exploit Primitive Identification
To assist the process of finding a useful exploit primitive
(e.g., control-flow hijacking primitive and memory write/leak
primitive), there is a rich collection of research works. For ex-
ample, using preconditioned symbolic execution and concolic
execution techniques, Brumley et al. develop AEG as well as
mayhem to identify control-flow hijacking primitives for fur-
ther exploitation. [3] [9] [7]. Shoshitaishvili et al. develop a
cyber reasoning system Mechanical Phish [62]. It is built
on angr [64] [69] [63] and performs fuzzing and symbolic trac-
ing for the PoC to identify exploit primitives. To efficiently
explore state space for exploit primitives in Linux kernel,
Wu et al. propose an automatic technique that utilizes under-
context fuzzing along with partial symbolic execution to ex-

plore CFHP and memory write primitive for UAF bugs [75].
To construct better exploit primitives with the capability of
out-of-bound access, Heelan et al. utilize regression tests to
obtain the knowledge of how to perform heap layout ma-
nipulation [30]. To obtain better exploit primitives for stack
Use-Before-Initialization vulnerabilities, Lu et al. propose a
deterministic stack spraying approach as well as an exhaustive
memory spraying technique [46].

In this work, we do not focus on facilitating primitive iden-
tification. Rather, we assume an exploit primitive is already
identified and our research endeavor centers around subse-
quent primitive evaluation phase.

2.2 Exploit Primitive Evaluation

In the primitive evaluation phase, a security analyst or an au-
tomatic exploit generation system tries suitable exploit tech-
niques for the seemingly exploitable states identified before.

Initially, without considering Data Execution Preven-
tion, such systems use straightforward techniques such as
ret2stack-shellcode and ret2libc with a CFHP [3] [9]
[62]. Taking W ⊕ X into account, Schwartz et al. propose
Q [60] to facilitate exploitation with a CFHP by automatically
constructing a ROP chain. Our work addresses the problem
of ROP bootstrapping without stack pivoting gadget and is
orthogonal to automatic ROP chaining techniques [33] [60]
[66] [24] [57] because we do not tackle the problem of ROP
payload construction.

With the facilitation of forward and backward taint anal-
ysis, Mothe et al. devise a technical approach to craft work-
ing exploits for simple vulnerabilities in user-mode applica-
tions [48]. Utilizing symbolic execution, Repel et al. craft ex-
ploits with single memory write primitive (e.g., unsafe unlink
and lookaside list corruption) for those heap overflow vulnera-
bilities residing in the userland applications [55]. To facilitate
primitive evaluation of kernel Use-After-Free exploitation,
Xu et al. propose two memory collision mechanisms [77] to
unleash CFHPs.

Recently, some research works take CFI into considera-
tion for primitive evaluation [29] [8] [59] [23] [31] [32] [35].
For example, Ispoglou et al. propose block oriented program-
ming (BOP) [35] to facilitate evaluation of repeatable arbitrary
memory write primitives by proving the Turing completeness
under CFI along with common userspace mitigations. BOP
assumes the existence of a dispatcher gadget. BOP also auto-
mates exploit generation. As a repeatable arbitrary memory
write primitive is almost "god-mode" of kernel exploitation,
our work facilitates primitive evaluation for those weaker ex-
ploit primitives (e.g., non-repeatable and ill-suited CFHP) in
real-world .

In this work, we also develop a tool for facilitating primi-
tive evaluation. However, this research work is fundamentally
different from the aforementioned works in at least one of
the following aspects. First, without assuming a perfect ex-

ploit primitive (e.g., unlimited number of invocations of an
arbitrary memory write primitive), we can faciliate exploit
primitive evaluation for those usually ignored exploit primi-
tive (e.g., ill-suited primitives and primitive that can only be
triggered once). Second, rather than dealing with applications
in the user space, our tool targets the Linux kernel where
exploitation typically involves complicated operations and
sophisticated security mitigation mechanisms are generally
enabled. Third, rather than generating one single exploit for
a target vulnerability, our tool automatically explores many
possible exploitation chains and output various working ex-
ploits.

2.3 Kernel Exploit Techniques/mitigations

Initially, a CFHP in the kernel can directly execute shellcode
in user-space because there is no isolation between user and
kernel space (e.g., ret2usr). Supervisor Mode Execution Pre-
vention (SMEP) [38] prevents kernel from executing userspace
code. An attacker can use code-reuse attack. To set stack
pointer to controlled payload, she uses the prevalent "pivot-
to-userspace" gadget to pivot stack to userspace [44]. With
adoption of Supervisor Mode Access Prevention (SMAP [11]),
an attacker can no longer rely on a fake stack in userspace
because userspace memory access is forbidden except during
I/O channel functions. Because there is usually none intra-
kernel stack pivoting gadget for a Linux kernel, an attacker
usually chooses to disable SMAP by flipping corresponding
bits in the cr4 register [41]. However, the "cr4-flipping" at-
tack typically rely on double CFHPs [41] and not suitable for a
none re-triggerable CFHP. In addition, a virtualization-based
hypervisor can detect cr4 register modification by inspect-
ing a vmexit and thus mitigate such exploitation [49] [51].
Ret2dir [39] attack sprays the physmap region by calling
syscall mmap, as the direct mapped physical memory is marked
as executable previously, diverting a CFHP to land on physmap
led to arbitary shellcode exectuion. However, with a kernel
patch applied, these physmap pages are no longer executable.

To enforce CFI policy for the kernel, several kernel CFI
solutions [16] [70] [26] have been proposed, however, these
mitigations are not broadly adopted by major Linux release
version such as CentOS, Ubuntu and Debian.

Data-only kernel exploit techniques directly use a memory
write primitive to modify sensitive kernel data objects such as
process credentials, page tables and virtual dynamic shared
object (vdso) [36]. However, mitigations have been proposed
[17] [67] and deployed [40] to prevent these low-hanging
fruits.

Note some memory write primitive can be transformed to a
control-flow hijacking primitive by overwriting and invoking
a code pointer in kernel’s data section or in the heap [19].

Kernel address space layout randomization (KASLR) is
widely deployed in order to present the attacker an unpre-
dictable attack surface. However, due to its lack of timely

re-randomization and coarse-grained nature (only randomiz-
ing section base address), an attacker does not even need an
arbitrary read primitive [45] [71] to bypass KASLR. With a
hardware side channel [34] [28], he can infer the coarse mem-
ory layout without leaking any kernel memory content. De-
spite kernel Page Table Isolation (KPTI [13]) removes some
side channels with extra overhead, he can also uses a restricted
memory leak primitive to infer the coarse memory layout [68].
In the default setting of Linux kernel, knowing coarse memory
layout is enough for various exploit techniques. (Kernel) Code
diversification/randomization [14] [15] [27] [74] [42] [53]
could significantly raise the bar of code-reuse exploitation by
thwarting an attacker from locating useful gadget.

3 Assumptions and Threat Model

Our threat model consists of a modern Linux kernel protected
by widely-deployed mitigations with a known vulnerability.

Mitigation setting. Similar to recent major Linux release
versions, we make the following assumptions of kernel mit-
igations. A kernel has enabled SMEP and SMAP [11] protec-
tion to prevent direct userspace access in kernel execution.
A kernel has enabled stack canary to protect return address
over stack for all functions containing local variable [22].
A kernel has enabled protection to prevent direct modifi-
cation of sensitive kernel data objects including process
credential [40] and page table [17]. A kernel has enabled
KASLR. A kernel has enabled KPTI [13] protection. A kernel
has been protected by virtualization-based hypervisor which
prevents unauthorized modification of cr4 regsiter [49]. A
kernel has set physmap pages as non-executable. A kernel
has enabled STATIC_USERMODEHELPER. The option routes all
call_usermodehelper() calls through a guard binary that can
properly filter the requested userland programs to be run by
the kernel [43]. However, A kernel does not enable a CFI en-
forcement such as RAP [70] because of performance concerns.
Available Exploit Primitives. We assume there is a PoC
which triggers the vulnerability and leads to a control-flow hi-
jacking primitive (CFHP). We assume the CFHP is already iden-
tified with the PoC through either manual analysis or dynamic
analysis such as symbolic tracing, thus finding exploit primi-
tives is orthogonal to our work and we can focus on evaluating
the CFHP. We assume a restricted memory leak primitive to
help infer coarse kernel memory layout (e.g., getting the base
address of code section .text and physmap region). We do
not assume the existence of an arbitrary memory write prim-
itive which could write to arbitrary kernel memory address.
We do not assume the existence of an arbitrary memory leak
primitive that can dump arbitrary kernel memory content. Un-
der the threat model, the content in arbitrary memory address
such as the stack canary value of arbitrary kernel thread usu-
ally remains secret because the coarse kernel memory layout
information does not reveal the stack canary value of a kernel
stack. We also assume the location of current kernel stack

remains secret although a restricted memory leak primitive
might help leak a pointer to current stack under some specific
vulnerability context.

4 Motivating Example

1 struct ip_mc_socklist {
2 struct ip_mc_socklist *next_rcu;
3 struct ip_mreqn multi;
4 unsigned int sfmode;
5 struct ip_sf_socklist *sflist;
6 struct rcu_head rcu;
7 };

(a) Definition of struct ip_mc_socklist. Its first member next_rcu
is unmanageable because the PoC uses a heap spray technique which
does not allow us to control first QWORD of struct ip_mc_socklist.

1 void ip_mc_drop_socket(struct sock *sk){
2 struct inet_sock *inet = inet_sk(sk);
3 struct ip_mc_socklist *iml;
4 // inet->mc_list is a dangling pointer
5 while ((iml = inet->mc_list) != NULL) {
6 // iml is alias of the dangling pointer
7 inet->mc_list = iml->next_rcu;
8 // queuing a rcu_head for execution in

the future
9 kfree_rcu(iml, rcu);

10 }
11 }
12 void rcu_reclaim(struct rcu_head *head){
13 head->func(head); // control-flow hijack
14 }
15 void rcu_do_batch(...){
16 struct rcu_head *next, *list;
17 while (list) {
18 next = list->next; // next rcu is

unmanageable
19 rcu_reclaim(list);
20 list = next;
21 }
22 }

(b) Tailored source code pertaining to the CFHP. function
ip_mc_drop_socket repeat invoking kfree_rcu() which queues a
rcu task for asynchronous execution until inet->mc_list is NULL.
The site pertaining to the CFHP is in function rcu_reclaim.

Table 1: A control-flow hijacking primitive in kernel UAF
vulnerability CVE-2017-8890.

We illustrate the challenges in evaluating a CFHP on x86-64
with CVE-2017-8890 [50], a recent vulnerability in the Linux
kernel.

4.1 Vulnerability and Exploit Primitive
The root cause of the bug is an Use-After-Free over an object
ip_mc_socklist defined in Table 1a. As is shown in Table 1b,
the UAF bug results in a dangling pointer inet->mc_list and

*iml become an alias of the dangling pointer in line 5. In line
7, there is an UAF access by dereferencing iml->next_rcu. In
line 9, kfree_rcu(iml) queues a callback denoted by iml->rcu.
Function rcu_do_batch handles the previously queued callback
when the CPU gets a chance to process the rcu callback list,
thus triggers another UAF access to the ip_mc_socklist object
in rcu_reclaim(). The loop from line 5 to line 10 will continue
and add another callback if iml->next_rcu is not NULL.

The CFHP is due to an asynchronous kfree_rcu call over
the dangling pointer *iml. To be specific, by manipulating
the value in iml->rcu_head through a proper heap spray,
a security analyst can get a CFHP later in rcu_reclaim()
because function kfree_rcu() (line 9) is designed to
queue a rcu callback denoted by iml->rcu_head. Function
rcu_do_batch will be executed in the future, it will iterate
over a list of rcu_head added by kfree_rcu(). The state-
ment pertaining to the CFHP (line 13) allows the attacker to
control rip (head->func) through heap spraying. At the time
of the control-flow hijacking, register rdi (head) points to a
controllable memory region.

4.2 Challenges of Crafting Working Exploit

However, developing an exploit with the aforementioned CFHP
is quite difficult because of the following challenges.

4.2.1 Challenge 1: Exploit Mitigations

Widely deployed kernel mitigations frustrate a large amount
of straight forward exploit techniques. With the presence
of SMEP/SMAP protection, it is impossible to directly launch
a traditional ret2user/pivot2usr attack. The ret2dir at-
tack [39] is also not suitable because the physmap region is
no longer executable [10]. With the write-protection over sen-
sitive data such as process credential and page table , it is not
possible to direct overwrite these data to escalate priviledge
by converting the CFHP into a memory write primitive.

A security analyst may think of the "cr4-flipping" attack
which usually requires two CFHPs: one for flipping the cr4
register and the other to launch ret2user/pivot2usr. How-
ever, this is often infeasible because virtualization based hy-
pervisor could easily detect the behavior of flipping cr4 reg-
ister by inspecting a vmexit [49] [51]. Even if there is not
protection over cr4 register, leveraging the "cr4-flipping"
attack or a similar exploit technique relying multiple CFHP
with this CFHP still faces the following challenge.

4.2.2 Challenge 2: Exploit Path Pitfall

Attempting to leverage the "cr4-flipping" exploit tech-
nique, a security analyst would expect two CFHPs to disable
SMEP/SMAP and pivoting to userspace respectively. However,
such a exploit technique could be imfeasible because of the
exploit path pitfall after the first CFHP.

rcu_reclaim()

rcu_reclaim(head)

mov cr4, rdi CFHP

rcu_do_batch()

head->func(head)

native_write_cr4()

�
� �

retret

rcu_reclaim(head’) head’->func(head’)

�

Invalid Memory Access
(Kernel Panic)

�

�

� �

Figure 1: Demonstration of an exploit path pitfall in the mo-
tivating example. After applying the first CFHP to overwrite
cr4 register with native_write_cr4(), rcu_reclaim(head’) is in-
voked but head’ is unmanageable and panics the kernel.

As is shown in Figure 1, after using the CFHP in rcu_reclaim

to disable SMAP protection by invoking the function
native_write_cr4() to zero the corresponding bits in cr4 reg-
ister, an attacker encounters an unexpected termination: in
previous execution, the loop from line 5 to line 10 in Table 1b
queues another rcu callback denoted by head’ (iml->next_rcu
->rcu) which is not under our control and causes a kernel
panic.

This kernel panic attributes to an invalid memory access.
The heap spray technique used by the PoC does not allow
an attacker to control first QWORD of iml (an ip_mc_socklist ob-
ject) because the first QWORD of an freed chunk becomes heap-
metadata, thus iml->next_rcu becomes unmanageable.

A straight-forward solution to tackle the invalid memory
access is adding extra constraints to ensure all related memory
accesses are valid. However, constraint solving for complex
program usually incurs high cost (both cpu time and memory)
[4] and could fail because of constraint conflicts [5]. Instead
of devoting extra resource to handle these pitfalls, an ideal
exploit path should effectively detour them. As a result of
lacking control of iml->next_rcu, the exploit path pitfall can
not be simply prevented by techniques like adding constraints
over the sprayed data and thus unavoidably panic the kernel.
Although it is possible to tackle the problem by further tuning
the PoC [55] [75] and obtain a better exploit primitive, the
showcased exploit path pitfall already hinders the evaluation
of the CFHP.

In addition, an exploit path pitfall could also be attributed
to un-successful heap spray. Due to the undeterminacy of
kernel execution, there is not any heap spray technique with
100% success ratio. To get multiple CFHPs for a UAF vulner-
ability, an attacker may need to do multiple rounds of heap
spraying and trigger a vulnerability multiple times, which
could dramastically decrease the success ratio of the entire
exploitation.

Even if two control-flow hijack primitive is available to the
attacker, it could still be very difficult for him to bypass the

mitigation combination of SMAP as well as virtualization-
based hypervisor, because the attempt to modify cr4 register
(in order to turn off SMAP and pivot kernel stack to userspace)
could be easily prevented.

4.2.3 Challenge 3: Ill-suited Exploit Primitive

Facing the infeasibility of popular kernel exploit techniques,
it is nature for a security analyst to use generic code-reuse
technique such as ROP [56] as a second resort.

Stack pivoting is a vital step [54] for a ROP attack especially
when an attacker does not control the contents on the stack
(e.g., the CFHP does not result from a stack overflow). In
userspace, many heap exploits relying on a stack pivoting
gadget (e.g., function swapcontext() and setcontext() in libc)
to bootstrap a ROP attack.

It is however difficult in the target kernel to pivot stack
pointer to a memory region under our control with this CFHP.
The reason behind is two-fold. First, as is mentioned before,
we can not simply pivot to a userspace with a traditional gad-
get such as xchg eax,esp; ret because of SMAP. Second, there
is not a suitable stack pivoting gadget in a Linux kernel binary
for this CFHP. Considering register rdi points to controllable
area with this primitive, it would be great to have a gadget
to overwrite rsp with a controllable memory address, such as
gadget with form xchg r**,rsp; ret, mov rsp,[r**]; jmp rxx

and mov rsp,r**; ret for consecutive payload [39]. Unfortu-
nately, similar traditional stack-pivoting gadget does not exist
or contains unavoidable exploit path pitfall (e.g., gadget xchg
rsp, r14 ; jmp rsp could successfully pivot the stack pointer

but inevitably panics the kernel) in our investigation across
various modern linux kernel images.

Although previous works have demonstrated the power of
code-reuse attack, mounting a traditional ROP attack for the
CFHP seems surprisingly difficult because of the lack of stack
pivoting gadget.

Without the capability of performing ROP attack, one may
think of reusing other kernel functions. Unfortunately, there
is also a problem of insufficient control over general registers
because only rdi points to a memory region under control
and other registers are not in control initially. We need to
enhance this CFHP by controlling more general registers and
perform subsequent exploitation.

5 Overview

To tackle the three challenges exposed by the motivating
example, a security analyst needs to design a new exploit
technique to turn a CFHP into a more exploit-friendly machine
state based on the vulnerability context and his prior experi-
ence. Due to the lack of a ready-to-use exploit technique, he
could expect a lot of debugging and manual efforts to explore
possible exploit paths and improve his prototype exploit dur-
ing the exploit development process and such practice could

be extremely time-consuming and even fruitless.
In the following, we discuss the considerations that go into

the design of KEPLER as well as the high level design of this
framework to facilitate CFHP evaluation.

5.1 Requirements for Design

To support evaluation of a CFHP with working exploits, KE-
PLER should receive as input a state representing a CFHP and
it should be able to find an exploit path towards priviledge
escalation and output corresponding exploit. To achieve the
above ultimate goal, KEPLER should adopt an exploit tech-
nique which satisfies the following requirements.

First, an exploit technique is able to bypass all the widely-
deployed mitigations enabled in the threat model. Second,
taking potential exploit path pitfalls into consideration, an
exploit technique should depend on only one control-flow
hijacking primitive and detour these pitfalls to prevent an
unexpected termination and make exploitation more reliable.
The form of an exploit technique would be ideally similar
to a “magic gadget2” which is previously mentioned in user-
space exploitation [18], especially in the context of adversarial
scenarios like Capture-The-Flag cyber competition. Third,
an exploit technique should benefit from time-tested exploit
technique such as ROP by efficiently bootstrapping traditional
code-reuse attack in absence of stack pivoting gadget with an
ill-suited CFHP. Last but not least, an exploit technique should
be suitable for the automation framework. On one hand, it
should be hard-to-defeat and not depend on any special code
or feature which could be easily eliminated. On the other
hand, the exploit generation phase should be easily automated
- it should be a well-defined search problem over a search
space of reasonable size.

5.2 High Level Design

CFHP
RIP: 0xdeadbeef RSP: x
 x : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot”
exploit

Arbitrary ROP
payload

Enhancing CFHP

Performing Static
analysis

Kernel Binary
Image

CFHP’
RIP: 0xdeadbeef RSP: x
 x : 0x41414141 0x41414141
x + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain

Figure 2: Overall of KEPLER’s design.

2The term “magic gadget” means given a CFHP, one can instantly succeed
in exploitation (e.g., getting a shell) by diverting control-flow to such gadget,
thus boost exploit development and gain advantages in a game.

To satisfy the requirements mentioned above, we design
KEPLER to facilitate exploit primitive evaluation. KEPLER
automatically generates an exploitation chain to bootstrap
any kernel ROP chain with a single CFHP through “single-shot”
exploitation.

Figure 2 shows how KEPLER automates the analysis task
necessary to leverage a CFHP to produce an exploit in the
presence of aforementioned challenges. Given a kernel state
snapshot representing the CFHP, KEPLER enhances its power
to construct a kernel stack-overflow by symbolically stitching
several types of candidate gadget identified by static analysis
on the kernel binary image.

As is mentioned before, our basic idea is to bootstrap a
traditional ROP attack with a CFHP in Linux kernel. At the high
level, we achieve this by a "single-shot" exploitation chain
which transforms a function pointer corruption based primi-
tive (CFHP) into a stack-overflow based primitive (CFHP’) as
is shown in Figure 2.

userspace
sysc

all()

pitfall

sysc
all()

trigger
vul.

CFHP

kernel

CFHP

trigger
vul.

(a) Exploitation by envoking
a control-flow hijacking prim-
itive twice.

pitfall

userspace
sysc

all()

smash
stack
exec
ROP
chain

kernel

CFHP

trigger
vul.

(b) Exploitation with a single
control flow hijack primitive.

Figure 3: A comparison of two exploitation approaches; a
known approach triggers a vulnerability twice but blocked by
an exploit path pitfall and the other triggers the vulnerability
only once.

Although there is not any gadget in Linux kernel which
allows an attacker to directly escalate priviledge, The pro-
posed “single-shot” exploitation is similar to “magic gadget”
mentioned above in a sense that it only requires a single CFHP
and could reliably achieve the goal of arbitrary code execu-
tion in kernel context. To be specific, as is shown in Figure
3b, the "single-shot" exploitation chain could finish exploita-
tion with a single CFHP and thus is able to circumvent an
exploit path pitfall after the return of CFHP which could cause
an unexpected termination otherwise. We can benefit from
a stack-overflow based CFHP because it allows us to place
arbitrary ROP payload on current kernel stack without any
stack pivoting gadget. Given the scarcity (or non-existence)
of intra-kernel stack pivoting gadget, we argue that construct-
ing a kernel stack overflow is the most generic approach to
perform a kernel ROP attack.

canary

rsp

stack

N bytes

copy N bytes to
userspace through

copy_to_user()

stack

ROP chain

canary

ROP chain

canary

smash kernel stack
with M bytes

payload through
copy_from_user()

canary

prepare payload with
disclosed canary

M bytes

Userspace

Kernel

rsp

Figure 4: An overview of “single-shot” exploitation which
discloses kernel stack canary and then smashes the kernel
stack with arbitrary user-supplied ROP payload.

6 Design

In this section, we describe the exploit technique adopted by
KEPLER and the insights behind the exploit tehcnique. As is
mentioned before, KEPLER uses a CFHP to construct a stack
overflow and bootstraps arbitrary ROP payload.

Our "single-shot" exploitation technique builds on two key
ideas of breaking isolation with I/O functions and improving
exploit success ratio with a single CFHP.

First, we can break isolation between kernel-space and
user-space by abusing kernel I/O functions. The insight be-
hind is such data channels are born to bypass SMAP which
prohibits user-space access because SMAP is explicitly and
temporarily disabled during execution of these functions. Fig-
ure 4 illustates a practice of reusing I/O functions to con-
struct kernel stack overflow by first leaking kernel stack ca-
nary with copy_to_user and then smashing kernel stack with
copy_from_user.

Second, “single-shot” exploitation can be achieved through
stitching various kernel function gadgets. We can enhance
register control for a CFHP with blooming gadget - a prevalent
family of function gadgets in Linux kernel. We can detour
exploit path pitfalls with a bridging gadget.

6.1 Constructing Stack Overflow
There is a family of prevalent stack smashing gadgets inside
Linux kernel, we observe they could greatly aid constructing
stack-overflow via taking intrinsic short return path triggered
by a page fault. However, such gadgets can not be directly
used because initial CFHP does not have enough register con-
trol and the presence of a stack canary. We address the two
problem in Section 6.2 and 6.3.

6.1.1 Looking into Stack-Smashing Gadget

We present stack-smashing gadgets which relies on functions
that serve as data channel between user-space and kernel-

1 static long bsg_ioctl(struct file *file, unsigned
int cmd, unsigned long arg){

2 struct sg_io_v4 hdr;
3 ...
4 if (copy_from_user(&hdr, uarg, sizeof(hdr)))
5 return -EFAULT; // short return
6 ...
7 }

(a) Source code.

1 ...
2 mov rdi,rsp
3 call <_copy_from_user>
4 test rax,rax
5 je 0xffffffff813d6ce4
6 mov rax,0xfffffffffffffff2
7 jmp <epilogue>
8 ...
9 <epilogue>:

10 mov rcx,QWORD PTR [rsp+0xa0]
11 xor rcx,QWORD PTR gs:0x28
12 jne <__stack_chk_fail>
13 add rsp,0xa8
14 pop rbx
15 ret

(b) Assembly code.

Table 2: The kernel code fragment of an stack-smashing gad-
get that could smash kernel stack with carefully crafted pay-
load.

space. The gadget could aid exploitation by transporting pay-
load of arbitrary length from user-space to kernel stack, with-
out assuming the stack location is already known.

As is named after, copy_from_user(void* dst, void* src,

unsigned long length)3 is a heavily used I/O kernel function
which migrates data from the user to kernel space. Recall that
SMAP prevents kernel code from accessing user-space address,
and to temporarily bypass the restriction, copy_from_user uses
a special instruction STAC to set AC flag in EFLAGS register before
accessing user-space memory, thus allows the subsequent
instructions to explicitly access user-space memory. Once
the copy is finished, instruction CLAC is executed to re-enable
SMAP.

As is specified in Linux kernel implementation, the function
copy_from_user() takes as input three arguments - dst, src and
length - which indicate the destination, source and length of
the data that need to be copied from the user to kernel space.

From the perspective of an attacker, a kernel stack overflow
could be caused if he lets the CFHP jump to the site right be-
fore the invocation of copy_from_user (line 2 in Table 2b) and
the machine state satisfies the following three requirements:

3The security of copy_from_user has been improved by adding extra
checks during the development of Linux Kernel. For example, upon failure
during copy, set the dst memory region after the successfully copied bytes
to zero to prevent uninitialized use.

¶ parameter dst (e.g., rdi) points to current kernel stack, ·
parameter src (e.g., rsi) points to any user-space address so
that its content is controllable by an attacker, ¸ parameter
length (e.g., rdx) is greater than the size of current stack frame
to cause a kernel stack overflow.

An interesting observation is that most (91% in Linux 4.15)
invocations of this function set destination dst to address of
a variable on kernel stack and thus will copy user data into a
kernel stack. If control-flow is hijacked to a invoking site of
this function (e.g., line 2 in Table 2b), an attacker could abuse
such coding style to satisfy the requirement ¶ above because
the code snippet help set rdi to current stack frame. However
requirements · and ¸ are still waiting to be satisfied given
the initial CFHP does not imply any control over register rdi

and register rsi. We will address this issue with blooming
gadget in Section 6.3.

6.1.2 Choosing Short Return Path

The prevalent error handling code which is introduced to make
kernel code more robust also provides a short return path for
an attacker. An attacker could benefit from such a short return
path after overflowing current stack frame.

As is depicted in line 4-5 in Table 2a, function bsg_ioctl

will directly return if return value of copy_from_user is not
zero. Our statistic indicates the function copy_from_user() has
been invoked at 671 sites in Linux 4.15. Among all these
invocation sites, more than 99% contain the fault handling
implementation.

The insight of prioritizing short return path after stack
smash is to prevent un-expected kernel panic as well as avoid
the complexity of resolving extra data dependency in an error-
prone and long normal return path of the function containing
tens of basic blocks.

To take a short return path, copy_from_user must return a
non-zero value as is shown in Table 2a. Reviewing the source
code of kernel function copy_from_user, we have identified 3
different situations which will force the function to return a
non-zero value, 1) incurring an integer overflow when cal-
culating src+length, 2) neither src+length nor src residing in
user-space, 3) encountering an unresolvable page fault during
copy. For the first two situations, the function copy_from_user

() performs sanity check and returns a non-zero value without
actually copying data to the kernel. For the last situation, the
function migrates data to the kernel and pads with zeros the
bytes failing to be copied.

6.1.3 Triggering Page Fault during copy_from_user

To force copy_from_user returning a non-zero value as well
as successfully copying the ROP payload from user-space
to kernel stack, we trigger page fault after copying enough
payload according to the last condition described above.

We illustrate a representative example in Figure 5. We
map two adjacent pages (p1 and p2) in the user-space and

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully
migrated

data failing to
copy

ROP payload
stack canary

ROP payload

n+1

Figure 5: An example where copy_from_user triggers a page
fault when copying user data to kernel stack.

then unmap the second one. We fill the end of the page p1
with the actual payload including a stack canary and a ROP
chain. We will discuss how to leak stack canary in Section 6.2.
Through the technical approaches mentioned in Section 6.3,
assume we have already obtained the control over registers
rsi and rdx pertaining to the second and third parameters
of copy_from_user respectively. Leveraging the control over
registers, we manipulate the values in these registers. More
specifically, we set rsi and rdx to p1+PAGE_SIZE−n and
n+1 respectively, with n representing the length of payload
actual copied. When the function attempts to copy the last
byte, it failes to access the content at p2 and triggers a page
fault because the page p2 is not mapped into the memory.
Eventually copy_from_user returns a positive number 1 because
one byte is not successfully copied.

6.2 Bypassing Stack Canary

As is mentioned earlier, to prepare a working payload for
stack smash, an attacker has to know the value of kernel stack
canary which remains secret in our threat model. We consider
the presence of a strong kernel stack canary setting where
stack canary is enabled for all functions containing a local
variable.

We will first introduce two kinds of prevalent gadgets, then
we discuss how to pair them to dump kernel stack memory.

6.2.1 Exposing Stack-disclosure Gadget and Auxiliary
Function

To leak stack canary, an intuitive way is to construct an info
leak of its value to user-space through an official data channel
such that SMAP is not violated. In the following we introduce
stack-disclosure gadget which is twin gadget of stack-smash
gadget as well as auxiliary function prologue gadget.

Stack-disclosure gadget. Function copy_to_user() is
widely used in the Linux kernel codebase to copy kernel
memory into user-space. In Linux kernel 4.15, our statistic
indicates this function has been invoked at 594 sites. Of all
these invocations, 82% are used for copying data from kernel

 lea rsi, [rbp-60h]
 call _copy_to_user
 test rax, rax
 jnz <fail>
 ...
<fail>:
 mov rbx, FFFFFFF2h
 jmp <exit>
 ...

<exit>:
 mov rcx, [rbp-30h]
 xor rcx, gs:0x28
 jnz panic
 add rsp, 60h
 pop rbx
 ...
 ret

push rbp
mov rbp, rsp
push r12
...
sub rsp, 58h
mov rax, gs:0x28
mov [rbp-30h], rdi
mov rax, [rdi]
call rax
...

Auxiliary function Canary disclosure gadget

�

�
�

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

return addr

return address pushed
by previous exploit

gadget

control flow jump
stack canary stack canary

Figure 6: An example of canary disclosure gadget and its
corresponding auxiliary gadget.

stack to user-space. Since this naturally establish a channel to
migrate data from kernel stack to user-space, we could exploit
the characteristic of this kernel function to disclose the canary
on kernel stack.

Auxiliary function. To successfully return from a stack-
disclosure gadget and continue exploitation, we use auxiliary
function to create a similar stack frame as the stack-disclosure
gadget and transfer the control-flow to stack-disclosure gadget
with an indirect call after the function prologue.

Auxiliary function should have stack canary protection
and contain a controllable indirect call after its own function
prologue which establishes a stack frame. Its layout of stack
frame could be paired with a stack-disclosure gadget to form
a “complete” stack frame and pass the stack canary check by
putting a valid stack canary on the stack.

6.2.2 Disclosing Canary on Kernel Stack

By diverting the control-flow to a call site of copy_to_user(),
we are closer to successfully disclose stack contents by satis-
fying the following four requirements. ¶, the registers should
be set properly as parameters for copy_to_user, ·, the kernel
should not panic during the path caller function returns, ¸,
the caller function of copy_to_user checks stack canary before
return, ¹, the return address on stack must be set properly to
continue the rest of the exploitation.

To tackle the first requirement, we leverage blooming gad-
get described in Section 6.3. For the second requirement, we
could trigger a page fault and take a short return path similar
to the technique described in Section 6.1.2. For the last two
requirements, we pair stack-disclosure gadget with auxiliary
function to generate a valid stack frame.

The key insight behind using auxiliary function to pair with
stack-disclosure gadget is reusing the canary generated by the
prologue of auxiliary function. A pair of them should have
the same number of saved registers, the same canary location
and stack size of 8 bytes difference.

1 static void aliasing_gtt_unbind_vma(struct
i915_vma *vma) {

2 ...
3 vma->vm->clear_range(vma->vm, vma->node.start,

vma->size);
4 ...
5 }

Table 3: The kernel code fragment (a blooming gadget) that
could enhance the control over multiple general registers.

To elucidate the rationale behind the pairing, we take for
example the routine of canary disclosure in Figure 6. We
re-direct a CFHP to auxiliary function, After the prologue of
auxiliary function which saves registers and establishes a
stack frame, the target of indirect call call rax is set to the
stack disclosure gadget in ¬. Then content of current stack
frame is copied to user-space by copy_to_user, a page fault is
triggered to force non-zero return value of copy_to_user, as
result short return path is taken in . Before the function
returns, stack canary sanity check is performed ®, because
the auxiliary function put a valid stack canary in current stack
frame, the canary check is successfully passed and return to
the caller of auxiliary function.

6.3 Putting them together: "Single-shot" Ex-
ploitation

It remains challenging to use an ill-suited CFHP to first dis-
close stack canary and then smashing kernel stack. The reason
behind is a CFHP in practice may have limitations in the fol-
lowing two aspects. First, difficulty in combining aforemen-
tioned two building blocks with a single CFHP, second, lack
of register control. "Single-shot" exploitation uses a blooming
gadget to amplify control over other registers and a bridging
gadget to combine the two actions sequentially.

6.3.1 Augmenting CFHP with Blooming Gadget

To enhance a CFHP with the ability to control more registers,
we introduce a family of blooming gadgets. The use of bloom-
ing gadget is inspired by COOP [59] which exploits a series
of type confusions C++ program. Although Linux is writ-
ten in C, its code heavily exhibits feature of object-oriented
programming. The “self” object is usually passed as the first
argument of function through rdi. And oftentimes the func-
tion contains‘’ indirect call using function pointer that resides
in the object passed as parameter. We could let the CFHP to
land at these functions to abuse type confusion.

We illustrate one such blooming gadget in Table 3. Ker-
nel function aliasing_gtt_unbind_vma() contains an indirect
call with three parameters calculated by dereferencing the
function’s first parameter *vma. Assume we have a CFHP with

1 void regcache_mark_dirty(struct regmap *map) {
2 map->lock(map->lock_arg); // the 1st

control-flow hijack
3 map->cache_dirty = true;
4 map->no_sync_defaults = true;
5 map->unlock(map->lock_arg); // the 2nd

control-flow hijack
6 }

Table 4: The source code of a bridging gadget – the kernel
code fragment that could spawn multiple CFHPs.

physmap page
under our control

A B

lock unlock

Layout of struct “regmap”

rdi

overflow gadget auxiliary &
disclosure gadget

Figure 7: Memory layout after using physmap spray [39] to
allocate physmap pages with data under our control.

control over rdi, we can get an augmented CFHP which con-
trols rdi, rsi, and rdx at the same time at line 3 in Table 3.

Note a blooming gadget works only if rdi is controllable
at beginning. We found this requirement is easy to fullfil in
practice. Our insight is that a CFHP usually has one register
potentially controllable - either the register is fully control-
lable or the register points to a heap area under control. Such
primitive can be turned into a CFHP with rdi control easily
through a single gadget which ends with an indirect call. A
worst case happens where a CFHP implies none of potentially
controllable registers. Fortunately, we are still able to lever-
age uninitialized or controllable data on kernel stack as well
as a common ROP gadget. For example, we could use the
gadget add rsp, 0x68; pop rdi; ret to gain control over rdi if
rsp+0x68 and rsp+0x70 is under our control.

6.3.2 Spawning Multiple CFHPs with Bridging Gadget

As is demonstrated in the motivating example in Section 4, an
exploitation practice depending on re-triggerable CFHP is not
reliable because of exploit path pitfalls. We use bridging gad-
get - a family of kernel functions with multiple controllable
indirect calls - to spawns two CFHPs and combine canary leak
and stack smash into a single shot.

For example, function regcache_mark_dirty shown in Ta-
ble 4 is such a bridging gadget which contains two indirect
calls, map->lock in line 2 and map->unlock in line 5.

As we can observe from the kernel gadget shown in Ta-
ble 4, the function pointers tied to these two indirect calls
are enclosed in a data object referred by the first argument

ɦ
ɥ

ɤ

ɣ ɢ

ɡ

ɠ

…

indirect jmp/call

Blooming

…

Bridging

indirect jmp/call

…

indirect jmp/call

…
indirect call

Auxiliary
…
ret

Disclosure

…
ret

Overflow ROP chain
gadget 1
gadget 2

…

CFHP

Figure 8: An illustration of how KEPLER stitches various
kernel gadgets for ultimate exploitation.

of the function regcache_mark_dirty(). Recall that the first ar-
gument of a function is specified by the general register rdi,
and we can usually obtain the control over that register using
technique described in Section 6.3.1. As a result, in order to
obtain control over both function pointers, we could first em-
ploy ret2dir [39] to allocate physmap pages and carefully
crafted a data object accordingly. Then, we could refer the
register rdi to a proper spot and set rip to the entry site of the
gadget shown in Table 4. As is shown in Figure 7, assume the
data carefully crafted in the spots of A and B represent the ad-
dress of the auxiliary gadget together with a disclosure gadget
responsible for leaking stack canary as well as the entry ad-
dress of the gadget pertaining to stack smashing respectively.
Then, by executing the bridging gadget shown in Table 4,
we could first leak canary using the first indirect call. After
the return of the call to copy_to_user(), there is no operations
between the consecutive indirect calls that impose additional
constraint to the second function pointer. Therefore, we could
perform the stack smashing using the second function pointer
without involving unexpected termination.

7 Implementation

Using IDA Pro SDK [20] and angr [64], we implemented
KEPLER with about 8,000 lines of Python code. KEPLER
is an automated tool that tracks down the aforementioned
exploitation gadgets and chains them for exploitability assess-
ment. Figure 8 depicts how these gadgets are concatenated.
While previous sections have discussed the basic building
blocks to perform an "single-shot" exploitation, the exploit
chain could not be determined once and for all with static
analysis because uniqueness of each CFHP and different gad-
get combinations bring about the variation of the exploitation
context. For example, the consecutive exploitation gadgets
might no longer obtain the control over related registers with
a different initial CFHP.

To address this problem, we developed our tool to assess
each of the gadget chains potentially useful for kernel ex-
ploitation. More specifically, we follow the guidance of the
exploitation chain construction shown in Figure 8, and de-
sign our tool to perform a depth-first exhaustive search which
explores all the possible combinations of exploitation gad-

gets. When performing the depth-first search: starting from
the rip hijack site, KEPLER symbolically executes the gad-
get chain that the search algorithm explores. To determine
whether a gadget chain is useful for exploitation, our tool
checks the memory access and deems a gadget chain useless
if that exploitation chain attempts to access the user space
or an unmapped kernel memory region. In addition, KEPLER
examines the control over the registers at two critical sites
– one at the entry of the disclosure gadget and the other at
the entry of the overflow gadget. We implemented KEPLER
to deem a gadget chain useless and terminate symbolic ex-
ecution earlier if it has no control over the registers rdi and
rdx at the first checking site or has no control over rsi and
rdx at the second checking site. The reason behind this im-
plementation is that, after executing bridging and auxiliary
gadgets, we might lose the control over the registers needed
for disclosure and overflow gadgets. With the check right be-
fore symbolically executing the two gadgets, we can quickly
determine the usefulness of the gadget chain in exploitation,
terminate unnecessary symbolic execution and thus save the
computation resources.

In the process of the assessment of the exploitation chain,
KEPLER symbolically executes each exploitation gadget. For
some of them, they might carry a large number of basic blocks
and even infinite loops. This could significantly influence the
efficiency our tool and even incur the state explosion problem.
To avoid these issues, for each path in an exploitation gadget,
we set KEPLER to explore at most 20 basic blocks. In addition,
we developed KEPLER to concretize each symbolic address.
To be more specific, we set up a kernel page under our control
in the physmap region and then concretize each symbolic
address with a non-overlapping address of that memory page.
In this work, we implemented this concretization mechanism
by simply extending ControlledData – one of the symbolic
address concretization strategies of angr.

For each gadget chain that passes the assessment, KEPLER
further performs constraint solving to generate payload ac-
cordingly. Technically, this can be easily done by using angr.
However, the Z3 solver used in angr consumes memory ex-
haustively and generally does not release the memory used
for constraint solving even after the completion of compu-
tation. To address this problem, KEPLER partitions symbolic
execution and constraint solving into two different processes.
In this way, KEPLER could terminate the memory-intensive
process every time the constraint solving is completed and
thus free the memory for consecutive computation.

As is described in Section 6.1, the payload smashed to
the stack contains the stack canary disclosed as well as a se-
quence of addresses indicating an ROP chain that performs
actual exploitation. With respect to the stack canary, we em-
ploy a separated thread in the user-space to rapidly retrieve the
canary – whenever it is disclosed to the user-space – and then
make it ready for stack smashing. Regarding the ROP chain
used in this work, we simply choose the ROP payload com-

monly used for privilege escalation. In Appendix, we specify
the ROP payload used in this work. It invokes kernel functions
commit_creds() and prepare_kernel_cred() to obtain the root
privilege. Note that the construction of an ROP payload is out
of scope of this paper. There are many commonly-adopted
ROP payloads, which can be naturally hooked with our new
kernel exploitation technique.

8 Case Study and Evaluation

In this section, we demonstrate our new exploit technique
and evaluate our automated tool KEPLER using real-world
kernel vulnerabilities and some recently-released CTF chal-
lenges. To be specific, we compare KEPLER with various
kernel exploitation techniques to show it is an effective ex-
ploit technique, we also compare KEPLER with automatic
exploit generation systems to highlight its power in evalu-
ating exploitability with a CFHP. In addition, we show the
efficacy and efficiency of KEPLER in facilitating exploitation
chain construction.

8.1 Setup

We first randomly selected 3 recently released CTF challenges
as well as 16 real-world kernel vulnerabilities archived be-
tween 2016 and 2017. Then, we successfully assembled these
vulnerabilities in a mainline Linux kernel 4.15.0 by inserting
them into the kernel code or reverting their patch accord-
ingly. In this work, we evaluate our tool KEPLER by using
this single Linux kernel, and demonstrate the effectiveness of
“single-shot” exploitation by launching exploitations against
the inserted vulnerabilities.

As is summarized in Table 5, the vulnerabilities inserted
cover various types such as Use-After-Free and Out-Of-
Bound (OOB) read/write etc. It should be noted that the CVEs
selected are a little bit unbalanced – with more in 2017 and
less in 2016. On the one hand, this is because there are more
than 2× of kernel vulnerabilities reported in 2017 than those
in 2016 [1]. On the other hand, this is because some compo-
nents in Linux kernel experience significant overhaul since
2016 and we have difficulty of re-enabling the corresponding
vulnerabilities in a new kernel image.

In order to run and evaluate KEPLER, we also assembled
and configured a testbed which has a 32-core Intel(R) Xeon(R)
Platinum 8124M CPU and 256GB of memory. For each vul-
nerability, we then used this testbed to run 28 concurrent
workers which symbolically explore the kernel code space
and track down useful exploitation chains in parallel.

8.2 Effectiveness of “single-shot” exploitation

By searching the Internet, we gathered 10 exploits pertaining
to the vulnerabilities inserted. As is shown in Table 5, these

ID Vulnerability type Public
exploit Q FUZE KEPLER G1 G2 G3 G4

First
chain
(min)

Total
time

(hour)

Total # of
exploitation

chains
CVE-2017-16995 OOB readwrite X† 7 7 X 41 114 27 201 45 37 29788
CVE-2017-15649 use-after-free X 7 X X 29 79 25 280 16 28 60207
CVE-2017-10661 use-after-free 7 7 7 X 28 78 30 301 17 25 49070
CVE-2017-8890 use-after-free 7 7 7 X 21 88 23 304 17 18 50471
CVE-2017-8824 use-after-free X 7 X X 63 101 35 306 50 70 164898
CVE-2017-7308 heap overflow X 7 7 X 31 91 30 241 14 47 110176
CVE-2017-7184 heap overflow X 7 7 X 31 95 31 254 24 37 93752
CVE-2017-6074 double-free X 7 7 X 18 79 31 308 16 15 31436
CVE-2017-5123 OOB write X† 7 7 X 40 86 27 311 14 39 113466
CVE-2017-2636 double-free 7 7 7 X 18 89 29 289 29 19 26372

CVE-2016-10150 use-after-free 7 7 7 X 34 84 25 293 52 34 88499
CVE-2016-8655 use-after-free X† 7 X† X 18 109 32 260 15 17 47413
CVE-2016-6187 heap overflow 7 7 7 X 22 85 32 301 17 21 51954
CVE-2016-4557 use-after-free 7 7 7 X 21 80 21 295 16 37 40889

CVE-2017-17053 use-after-free 7 7 7 7 - - - - - - -
CVE-2016-9793 integer overflow 7 7 7 7 - - - - - - -

TCTF-credjar use-after-free X† 7 7 X 35 89 25 292 25 14 82913
0CTF-knote uninitialized use 7 7 7 X 21 89 33 318 17 36 40923

CSAW-stringIPC OOB read&write X† 7 7 X 35 88 25 289 17 33 84414

Table 5: The comparison of exploitability as well as performance of KEPLER. G1, G2, G3 and G4 represent the blooming gadget,
bridging gadget, auxiliary and disclosure gadget pair, and stack-smash gadget. The “first chain” column indicates the time spent
on pinpointing the first exploitation chain. The “total time” column specifies the total amount of time spent on finding all useful
exploitation chains. † symbol represents the cases where the exploits could only bypass major mitigations (e.g., SMAP and SMEP)
and fail to bypass others under our threat model. Xand 7 symbols indicate the existence and non-existence of a working exploit.

publicly available exploits perform exploitation through vari-
ous approaches and therefore demonstrate different capability
in bypassing kernel mitigations. Among these exploits, we
found there are only 5 of them demonstrating the ability to
perform exploitation under our aforementioned threat model.
In comparison with the working exploits generated by KE-
PLER, publicly available exploits demonstrate much weaker
exploitability (with 5 vs 17 cases). To some extent, this im-
plies existing exploitation approaches highly rely upon the
quality of the target vulnerability and corresponding CFHP,
whereas our approach KEPLER could utilize prevalent kernel
function and gadgets to explore exploitable machine states
and thus escalate the exploitability for a CFHP. However, pre-
vious exploit technique Q [60] could not generate working
exploit because Q rely on a stack pivoting gadget while its
gadget discovery phase return none of working pivoting gad-
get4. FUZE could only generate exploit for 3 cases because
it evaluate exploitability of a CFHP simply with two straight
forward exploit technique: pivot-2-usr and “cr4-flipping”.
The former does not bypass SMAP and the latter only works
when at least two CHFPs is available.

Even for the vulnerabilities against which both public ex-
ploits and ours demonstrate the same capabilities in bypassing
mitigations, we argue that our approach still exhibits stronger
exploitability. This is because the public exploits circumvent
mitigations by manipulating control registers with two CFHPs,

4The result related to Q in our evaluation is based on inference of its
design instead of running its tool because we were not able to get the source
code of Q.

as is discussed in Section 2.3, this practice can be easily
restricted by virtualization extension. For the two vulnera-
bilities CVE-2017-17053 and CVE-2016-9793 for which our
approach fails to derive working exploits, we manually exam-
ine their execution traces leading to the kernel panic. We find
that the failure results from the following fact. In order to take
the control over rip prior to exploitation, both of these vulner-
abilities require an exploit to access the data in the user space.
This violates the protection of SMAP. KEPLER restricts any
operations that violate our threat model and output a failure if
none of the exploitation chains could avoid such violation.

8.3 Effectiveness and Efficiency of Our Tool
Our experiment utilizes KEPLER to explore the aforemen-
tioned kernel image with the vulnerabilities inserted. In this
process, we exhaustively search gadget chains useful for ex-
ploitation and mitigation circumvention. In Table 5, we show
the total number of useful exploitation chains identified as
well as the total amount of time spent on finding these gadget
chains. As we can observe, KEPLER could automatically pin-
point tens of thousands of unique kernel gadget chains to per-
form exploitation without triggering kernel protections. Since
we implement KEPLER to perform gadget chain exploration
in parallel, we also discover that these gadget chains could
typically be identified within 50 hours. These observations
together imply that KEPLER could diversify the ways of per-
forming kernel exploitation in an efficient fashion. Given that
some commercial security products pinpoint kernel exploita-

tion by using the patterns of exploits, the ability to diversify
exploitation has the potential to assist an adversary to bypass
the detection of commercial security products.

From Table 5, we also observe that, for different vulnera-
bilities, KEPLER generates different number of gadget chains
useful for exploitation. This can be attributed to the follow-
ing fact. In the process of gadget chain identification and
assessment, KEPLER starts gadget assessment from different
machine states and contexts. For some vulnerabilities, the
machine states and contexts do not provide us with sufficient
control over some registers and memory regions. Under this
circumstance, the availability of useful kernel gadgets would
vary and thus influence the total number of generated exploits.

In Table 5, we also depict the time spent on finding the first
kernel gadget chain useful for exploitation. As we can observe,
KEPLER could quickly output an useful exploitation chain in
less than about 50 wall-clock minutes (and the corresponding
CPU-core time is roughly 1400 minutes given the prototype
system uses 28 concurrent workers). This implies KEPLER
has the potential to be used as a tool to quickly derive a
working exploit without too many human efforts. Last but not
least, Table 5 also shows the total number kernel gadgets in
different categories. As we can observe, there are typically
tens of gadgets in each categories. This means that one cannot
simply block our exploitation approach by eliminating a small
number of kernel gadgets. In Section 9, we will further discuss
the defense of our exploitation approach.

9 Discussion and Future Research

In this section, we discuss some plausible defence mecha-
nisms against our “single-shot” exploit chain. Also, we elabo-
rate why they are not effective nor suitable for preventing the
proposed attack. Following our discussion and analysis, we
then provide some suggestions for the future research.
Plausible Defense Mechanisms. To defend against the ex-
ploit chain mentioned above, one straightforward reaction is to
eliminate the gadgets that must be used in kernel exploitation.
However, as we have already demonstrated and discussed in
Section 8, the tool we develop could enrich the choices of the
gadgets needed for exploitation. This means that, following
this potential solution, Linux developers would inevitably in-
troduce significant amount of kernel code changes and it is
difficult to guarantee these changes would not bring about neg-
ative influence upon Linux kernel execution. Other security
mitigation could also be used as potential defense mecha-
nisms. For example, there have already been a rich collection
of research works on control and data flow integrity protection
(e.g. [2] [78] [79] [25] [16] [26]). In addition, randomizing
stack canary per-function call [73] could idealy prevent our
exploit technique because it discourage the effort to fake stack
frame and leak stack canary with copy_to_user. Integrating and
enabling them in Linux kernel, they could easily fail the attack
mentioned above. Unfortunately, these techniques usually in-

cur unacceptable overhead (e.g., [16] has an average overhead
of 13%) or sometimes rely upon hardware features to reduce
their overhead (e.g., [25]). As a result, they are barely used as
a practical, general defense solution in popular release version
of Linux kernel.
Possible Future Research. Looking ahead, we suggest the
future research could be conducted from two aspects. From
the perspective of automatic exploit primitive evaluation, we
believe there is an emerging need to invent technique to sys-
tematically evaluate various exploit primitives, expecially for
those weak exploit primitives. In practice, theory and tech-
niques should be proposed to facilitate deriving better exploit
primitive with a initially weak exploit primitive. From the
perspective of defense, on one hand, we believe there remains
the need to design lightweight control-flow enforcements for
Linux kernel. On the other hand, instead of manually over-
hauling kernel code, one could augment GCC with the ability
to eliminate the exploitation gadgets at compilation time.

10 Conclusion

We show it is generally challenging to generate exploits with
a control-flow hijacking primitive in the Linux kernel under
a realistic threat model, while there are a lot of research ef-
forts in identifying exploit primitives and facilitating exploit
generation with various exploit primitives. We propose KE-
PLER, a framework to facilitate evaluation of control-flow
hijacking primitives which leverages a novel “single-shot” ex-
ploitation to convert a control-flow hijacking primitive into
a classic stack overflow and thus bootstrap traditional code-
reuse attack against modern Linux kernel. In comparison with
previous automatic exploit generation and exploit hardening
techniques, we showed that KEPLER outperforms other ex-
ploit techniques and could automatically generate thousands
of working exploit for a control-flow hijacking primitive in
Linux kernel despite the challenges of widely-deployed se-
curity mitigations, exploit path pitfall and ill-suited exploit
primitive. Following this finding, we safely conclude that
KEPLER can significantly facilitate evaluating control-flow
hijacking primitive in the Linux kernel.

11 Availability

We release the source code of KEPLER, a kernel embeded
with vulnerabilities and generated gadget chains for research
and education purpose [76].

12 Acknowledgements

We would like to thank our shepherd Stephen McCamant
and anonymous reviewers for their help and comments.
The IIE authors were partially supported by the Stategic
Priority Research Program of the CAS (XDC02040100,

XDC02030200, XDC02020200), the National Key Research
and Development Program of China (2016YFB0801004,
2016QY071405, 2018YFB0803602, 2016QY06X1204), the
Key Foundation of Beijing Committee of Science and Tech-
nology (Z181100002718002), the Key Laboratory of Network
Assessment Technology of Chinese Academy of Sciences and
Beijing Key Laboratory of Network Security and Protection
Technology. The PSU authors were partially supported by
IST seed grant. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements.

References

[1] Linux kernel vulnerability statistics, 2018. https:
//www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendor_id=33.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of the 12nd ACM conference on
Computer and communications security (CCS), 2005.

[3] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley. Automatic exploit generation. Communications
of the ACM, 57, 2014.

[4] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi. A survey of symbolic execution techniques. ACM
Comput. Surv., 51(3), 2018.

[5] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley. Your
exploit is mine: Automatic shellcode transplant for remote
exploits. In Proceedings of the 38th IEEE Symposium on
Security and Privacy (S&P), 2017.

[6] S. Bratus, M. Locasto, M. Patterson, L. Sassaman, and A. Shu-
bina. Exploit programming: From buffer overflows to weird
machines and theory of computation. {USENIX; login:}, 2011.

[7] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng. Auto-
matic patch-based exploit generation is possible: Techniques
and implications. In Proceedings of the 29th IEEE Symposium
on Security and Privacy (S&P), 2008.

[8] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow
integrity. In Proceedings of the 24th USENIX Security Sympo-
sium (USENIX Security), 2015.

[9] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Un-
leashing mayhem on binary code. In Proceedings of IEEE
Symposium on Security and Privacy (SP), 2012, 2012.

[10] K. Cook. x86/mm: Always enable con-
fig_debug_rodata and remove the kconfig option,
2016. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
9ccaf77cf05915f51231d158abfd5448aedde758.

[11] J. Corbet. Supervisor mode access prevention, 2012. https:
//lwn.net/Articles/517475/.

[12] J. Corbet. Post-init read-only memory, 2015. https://lwn.
net/Articles/666550/.

[13] J. Corbet. A page-table isolation update, 2018. https://lwn.
net/Articles/752621/.

[14] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.
Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical
code randomization resilient to memory disclosure. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy
(S&P), 2015.

[15] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz.
It’s a trap: Table randomization and protection against function-
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 2015.

[16] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete
control-flow integrity for commodity operating system kernels.
In Proceedings of the 35th IEEE Symposium on Security and
Privacy (S&P), 2014.

[17] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi. Pt-rand:
Practical mitigation of data-only attacks against page tables.
In Proceedings of the 2017 Network and Distributed System
Security Symposium (NDSS), 2017.

[18] david942j. The one-gadget in glibc, 2018. https:
//david942j.blogspot.com/2017/02/project-one-
gadget-in-glibc.html.

[19] dong-hoon you. New reliable android kernel root exploita-
tion techniques, 2016. http://powerofcommunity.net/
poc2016/x82.pdf.

[20] C. Eagle. The IDA Pro Book (Second edition). no starch press,
2011.

[21] J. Edge. Extending the use of ro and nx, 2011. https://lwn.
net/Articles/422487/.

[22] J. Edge. "strong" stack protection for gcc, 2014. https:
//lwn.net/Articles/584225/.

[23] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control jujutsu: On
the weaknesses of fine-grained control flow integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security.

[24] A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou,
M. Payer, and E. Bodden. Pshape: Automatically combin-
ing gadgets for arbitrary method execution. In International
Workshop on Security and Trust Management, 2016.

[25] X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding control flows
using intel processor trace. ACM SIGOPS Operating Systems
Review, 51(2), 2017.

[26] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-
flow integrity for kernel software. In Proceedings of 2016
IEEE European Symposium on Security and Privacy (Euro
S&P), 2016.

[27] J. Gionta, W. Enck, and P. Larsen. Preventing kernel code-reuse
attacks through disclosure resistant code diversification. In
Proceedings of the 2016 IEEE Conference on Communications
and Network Security (CNS), 2016.

[28] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch side-channel attacks: Bypassing SMAP and kernel

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/666550/
https://lwn.net/Articles/666550/
https://lwn.net/Articles/752621/
https://lwn.net/Articles/752621/
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
http://powerofcommunity.net/poc2016/x82.pdf
http://powerofcommunity.net/poc2016/x82.pdf
https://lwn.net/Articles/422487/
https://lwn.net/Articles/422487/
https://lwn.net/Articles/584225/
https://lwn.net/Articles/584225/

ASLR. In Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2016.

[29] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out
of control: Overcoming control-flow integrity. In Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P),
2014.

[30] S. Heelan, T. Melham, and D. Kroening. Automatic heap
layout manipulation for exploitation. In Proceedings of the
27th USENIX Security Symposium (USENIX Security), 2018.

[31] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Au-
tomatic generation of data-oriented exploits. In Proceedings
of the 24nd USENIX Security Symposium (USENIX Security),
2015.

[32] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang. Data-oriented programming: On the expressive-
ness of non-control data attacks. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (S&P), 2016.

[33] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In Pro-
ceedings of the 18th USENIX Security Symposium (USENIX
Security), 2009.

[34] R. Hund, C. Willems, and T. Holz. Practical timing side chan-
nel attacks against kernel space aslr. In Proceedings of the 34th
IEEE Symposium on Security and Privacy (S&P), 2013.

[35] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. Block
oriented programming: Automating data-only attacks. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, 2018.

[36] itsZN. Bypassing smep using vdso overwrites, 2015. https:
//itszn.com/blog/?p=21.

[37] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin.
Razzer: Finding kernel race bugs through fuzzing. In Pro-
ceedings of the 40th IEEE Symposium on Security and Privacy
(S&P), 2019.

[38] M. Jurczyk and G. Coldwind. SMEP: What is it, and how to
beat it on windows, 2011. http://j00ru.vexillium.org/
?p=783.

[39] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. ret2dir:
Rethinking kernel isolation. In Proceedings of the 23rd
USENIX Security Symposium (USENIX Security), 2014.

[40] S. Knox. Real-time kernel protection(rkp), 2016.
https://www.samsungknox.com/en/blog/real-time-
kernel-protection-rkp.

[41] A. Konovalov. Exploiting the linux kernel via packet sock-
ets, 2017. https://googleprojectzero.blogspot.com/
2017/05/exploiting-linux-kernel-via-packet.html.

[42] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis.
Compiler-assisted code randomization. In Proceedings of the
39th IEEE Symposium on Security and Privacy (S&P), 2018.

[43] G. Kroah-Hartman. Introduce static_usermodehelper to
mediate call_usermodehelper, 2017. https://patchwork.
kernel.org/patch/9519063/.

[44] Lexfo. Cve-2017-11176: A step-by-step linux kernel exploita-
tion, 2018. https://blog.lexfo.fr/cve-2017-11176-
linux-kernel-exploitation-part4.html#stack-
pivoting.

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading kernel memory from user space. In Procced-
ings of 27th USENIX Security Symposium (USENIX Security),
2018.

[46] K. Lu, M. Walter, D. Pfaff, and S. Nürnberger and Wenke
Lee and Michael Backes. Unleashing use-before-initialization
vulnerabilities in the linux kernel using targeted stack spraying.
In Proceedings of the 2017 Network and Distributed System
Security Symposium (NDSS), 2017.

[47] M. Miller. Modeling the exploitation and mitigation of memory
safety vulnerabilities. In Breakpoint, 2012.

[48] R. Mothe and R. R. Branco. Dptrace: Dual purpose trace for
exploitability analysis of program crashes. In Black Hat USA
Briefings, 2016.

[49] J. Nakajima and S. Grandhi. Kernel protection using hardware
based virtualization. In The Linux Foundation events, 2017.

[50] National Vulnerability Database. Cve-2017-8890 detail, 2017.
https://nvd.nist.gov/vuln/detail/CVE-2017-8890.

[51] M. Oh. Detecting and mitigating elevation-of-privilege exploit
for cve-2017-0005, 2017. https://cloudblogs.microsoft.
com/microsoftsecure/2017/03/27/detecting-and-
mitigating-elevation-of-privilege-exploit-for-
cve-2017-0005/.

[52] S. Pailoor, A. Aday, and S. Jana. Moonshine: Optimizing os
fuzzer seed selection with trace distillation. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security),
2018.

[53] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis,
and V. P. Kemerlis. Kernel protection against just-in-time code
reuse. ACM Transactions on Privacy and Security (TOPS),
22(1), 2019.

[54] A. Prakash and H. Yin. Defeating rop through denial of stack
pivot. In Proceedings of the 31st Annual Computer Security
Applications Conference, pages 111–120, 2015.

[55] D. Repel, J. Kinder, and L. Cavallaro. Modular synthesis of
heap exploits. In ACM SIGSAC Workshop on Programming
Languages and Analysis for Security (PLAS), 2017.

[56] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 15(1):2, 2012.

[57] J. Salwan. Ropgadget, 2012. https://github.com/
JonathanSalwan/ROPgadget.

[58] S. Schumilo, C. Aschermann, and R. Gawlik. kafl: Hardware-
assisted feedback fuzzing for os kernels. In Proceedings of the
25th USENIX Security Symposium (USENIX Security), 2017.

[59] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in c++ applications.

https://itszn.com/blog/?p=21
https://itszn.com/blog/?p=21
http://j00ru.vexillium.org/?p=783
http://j00ru.vexillium.org/?p=783
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://patchwork.kernel.org/patch/9519063/
https://patchwork.kernel.org/patch/9519063/
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://nvd.nist.gov/vuln/detail/CVE-2017-8890
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget

In In Proceedings of the 2015 IEEE Symposium on Security
and Privacy (S&P), 2015.

[60] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit
hardening made easy. In Proceedings of the 20th USENIX
Security Symposium (USENIX Security), 2011.

[61] M. Seaborn and T. Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges, 2015.
https://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html.

[62] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Cor-
betta, F. Disperati, A. Dutcher, J. Grosen, P. Grosen, A. Machiry,
et al. Mechanical phish: Resilient autonomous hacking. IEEE
Security & Privacy, 16(2):12–22, 2018.

[63] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vi-
gna. Firmalice - automatic detection of authentication bypass
vulnerabilities in binary firmware. In Proceedings of the 2015
Network and Distributed System Security Symposium (NDSS),
2015.

[64] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and
G. Vigna. SoK:(state of) the art of war: Offensive techniques
in binary analysis. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P), 2016.

[65] K. A. Shutemov. pagemap: do not leak phys-
ical addresses to non-privileged userspace, 2015.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[66] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the effec-
tiveness of fine-grained address space layout randomization.
In Proceedings of the 34 IEEE Symposium on Security and
Privacy (S&P), 2013.

[67] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee. En-
forcing kernel security invariants with data flow integrity. In
Proceedings of the 2016 Network and Distributed System Se-
curity Symposium (NDSS), 2016.

[68] spender. wait for kaslr to be effective, 2017.
https://grsecurity.net/~spender/exploits/wait_
for_kaslr_to_be_effective.c.

[69] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller:
Augmenting fuzzing through selective symbolic execution. In
Proceedings of the 2016 Network and Distributed System Se-
curity Symposium (NDSS), 2016.

[70] P. Team. Rap: Rip rop, 2015. https://pax.grsecurity.
net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf.

[71] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security),
2018.

[72] D. Vyukov. Syzkaller, 2015. https://github.com/google/
syzkaller.

1 int i=0;
2 unsigned long *p=(unsigned long*)PAYLOAD_START;
3 p[i++]=0; // padding
4 p[i++]=0; // canary location
5 p[i++]=0; // padding for saved registers
6 ...
7 // priviledge escalation
8 p[i++]=POPRDI; // pop rdi ; ret
9 p[i++]=0;

10 p[i++]=PREPARE_KERNEL_CREDS;
11 p[i++]=POPRDXRET; // pop rdx ; ret
12 p[i++]=COMMIT_CREDS;
13 p[i++]=MOV_RDI_RAX_JMP_RDX; // mov rdi, rax ;

jmp rdx
14 // sleep for 60 minutes
15 p[i++]=POPRDI; // pop rdi ; ret
16 p[i++]=1000 * 60 * 60;
17 p[i++]=MSLEEP;

Table 6: The kernel ROP payload that performs privilege
escalation.

[73] Z. Wang, X. Ding, C. Pang, J. Guo, J. Zhu, and B. Mao. To
detect stack buffer overflow with polymorphic canaries. In
2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 243–254.
IEEE, 2018.

[74] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and
W. Aiello. Shuffler: Fast and deployable continuous code
re-randomization. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
16), 2016.

[75] W. Wu, Y. Chen, J. Xu, X. Xing, W. Zou, and X. Gong. Fuze:
Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security), 2018.

[76] ww9210. kepler-cfhp, 2018. https://github.com/ww9210/
kepler-cfhp.

[77] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu.
From collision to exploitation: Unleashing use-after-free vul-
nerabilities in linux kernel. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS), 2015.

[78] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and
randomization for binary executables. In Proceedings of the
34th IEEE Symposium on Security and Privacy (S&P), 2013.

[79] M. Zhang and R. Sekar. Control flow integrity for cots bina-
ries. In Proceedings of the 22nd USENIX Security Symposium
(USENIX Security), 2013.

Appendix

As is discussed in Section 6, we utilize a series of kernel gadgets to
bypass kernel mitigations. After that, we redirect the control flow of
the Linux kernel to a universal ROP payload. By using that payload,

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/ww9210/kepler-cfhp
https://github.com/ww9210/kepler-cfhp

1 // copy more payloads to the kernel stack
2 // prepare auguments for copy_from_user()
3 p[i++]=POPRAX; // pop rax ; ret
4 p[i++]=POPRSI; // pop rsi ; ret
5 p[i++]=0xffffffff81254a99; // mov rdi, rsp ;

call rax
6 p[i++]=POPRAX;
7 p[i++]=0x1000;
8 p[i++]=0xffffffff81a04201; // sub rdi, rax ;

mov rax, rdi ; ret
9 p[i++]=POPRSI;

10 p[i++]=STAGE_TWO_ROP_PAYLOAD;
11 p[i++]=POPRDX; // pop rds ; ret
12 p[i++]=0x1040;
13 p[i++]=COPY_FROM_USER; // copy_from_user()
14
15 // substract rsp to the first gadget
16 p[i++]=POPRAX;
17 p[i++]=0x1040;
18 p[i++]=0xffffffff81a04201; // sub rdi, rax ;

mov rax, rdi ; ret
19 p[i++]=POPR12; // pop r12 ; ret
20 p[i++]=0xffffffff810001cc; // ret
21 p[i++]=0xffffffff81c01688; // mov rsp, rax ;

push r12 ; ret

Table 7: The kernel ROP payload that copies an ROP payload
to the current stack frame and then subtracts the stack pointer
to execute the ROP payload.

we demonstrate the exploitability of a kernel vulnerability. In Table 6,
we show an ROP payload used in this work. As is specified, it first
performs privilege escalation. Then, it sets the Linux kernel to fall
into asleep for a long time by using the kernel function msleep().

Considering Linux kernel might perform inline permission checks
and we need to execute an ROP payload with an arbitrary length,
we further utilize the ROP payload like the one shown in Table 7 to
address this payload length issue.

	Introduction
	Background and Related Work
	Exploit Primitive Identification
	Exploit Primitive Evaluation
	Kernel Exploit Techniques/mitigations

	Assumptions and Threat Model
	Motivating Example
	Vulnerability and Exploit Primitive
	Challenges of Crafting Working Exploit
	Challenge 1: Exploit Mitigations
	Challenge 2: Exploit Path Pitfall
	Challenge 3: Ill-suited Exploit Primitive

	Overview
	Requirements for Design
	High Level Design

	Design
	Constructing Stack Overflow
	Looking into Stack-Smashing Gadget
	Choosing Short Return Path
	Triggering Page Fault during copyfromuser

	Bypassing Stack Canary
	Exposing Stack-disclosure Gadget and Auxiliary Function
	Disclosing Canary on Kernel Stack

	Putting them together: "Single-shot" Exploitation
	Augmenting CFHP with Blooming Gadget
	Spawning Multiple CFHPs with Bridging Gadget

	Implementation
	Case Study and Evaluation
	Setup
	Effectiveness of ``single-shot'' exploitation
	Effectiveness and Efficiency of Our Tool

	Discussion and Future Research
	Conclusion
	Availability
	Acknowledgements

