
KEPLER:	Facilitating	Control-flow	
Hijacking	Primitive	Evaluation	for	

Linux	Kernel	Vulnerabilities		
	Wei Wu1,2,3, Yueqi Chen2, Xinyu Xing2, Wei Zou1,3

1.  CAS-KLONAT, BKLONSPT, Institute of Information Engineering, Chinese Academy of Sciences
2.  College of Information Sciences and Technology, Pennsylvania State University

3.  School of Cyber Security, University of Chinese Academy of Sciences

Aug	15,	2019 1	

28th	USENIX	Security	
Symposium

Background
• OS kernels are written in low-level languages C/C++

•  Linux: C
•  Windows: C and C++

• OS kernels are prone to memory corruption bugs
•  Out of Bounds Access, Use-After-Free, data race and even type confusion (in C++

components)
•  Bugs in OS kernel are plenty and many of them are exploitable
•  Exploit Mitigation: make exploit harder with ignorable cost

•  The cost to prove exploitability is increasing
•  Exploitability: a predicate related to each bug
•  A concrete “kernel exploit” could serve as a proof of exploitability

2	

Background (cont.)
•  Automatic exploit generation systems: capable of generating concrete exploits
•  Automatic exploit generation systems in two steps:

1.  Identifying exploit primitives
2.  Evaluating exploit primitives

•  Exploit primitive:
•  A machine state which empowers an attacker to craft an exploit (a.k.a. programming weird

machine)
•  Data flow: Writing 8 bytes anywhere, write 1 byte to adjacent heap chunk etc.
•  Control flow: Control-flow hijacking

•  Control-flow hijacking primitive is one of the most popular exploit primitives.

3	

Crafting a control-flow hijacking kernel exploit
•  Step 1. Adjusting parameters of system calls and memory

layout
•  [USENIX-SEC18][CCS 16]

Getting	a	control-flow	
hijacking	primitive	

Adjusting	syscall	
parameters	and		memory	

layout	

Executing	exploitation	
payload	

1

2

3
[USENIX-SEC14] Vasileios et al., ret2dir: Rethinking Kernel Isolation
[CCS 16] Xu et al., From Collision To Exploitation: Unleashing Use-After-Free
Vulnerabilities in Linux Kernel.
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for Exploitation.
[P0 blog] Andrey Konovalov. Exploiting the Linux kernel via packet sockets.
[POC2016] Dong-hoon you. New reliable android kernel root exploitation techniques.

•  Step 2. Getting a control-flow hijacking primitive
•  [P0 blog][POC16]

•  Step 3. Payload execution
•  [USENIX-SEC 14]

4	

Key Step: from control-flow hijack to ROP payload execution

Getting	a	control-flow	
hijacking	primitive	

How	to	bootstrap	a	ROP	attack?	(e.g.	Transition	S	->	S’)	

Executing	exploitation	
payload	(e.g.	through	

ROP)	

Semantic	of	an	example		ROP	payload	
	

commit_creds(prepare_kernel_cred(0))	
...	
(fixing	context	and	safely	return	to	
userspace)	
...	
execve(“/bin/sh”,NULL,NULL)	

Kernel	State	S	
gdb>	info	registers	
 rsp: x rip: 0x41424344 !
 … !
gdb> x/10gx $rsp!
X : ???????? ???????? !
X+8 : ???????? ???????? !

Kernel	State	S’	
gdb>	info	registers	
 rsp: x’ rip: 0x51525354 !
 … !
gdb> x/10gx $rsp!
X’ : 41414141 41414141 !
X’+8 : 41414141 41414141 !

5	

Challenge 1. kernel exploit mitigations

kernel	
space	

user	
space	

Control	register	

virtualization-based	hypervisor	

cr4	

corrupted	code	ptr	shellcode	

blocked	by	SMEP	

corrupted	data	ptr	

crafted	data	
object	

protected	by	hypervisor	

physmap	

Non-executable	
physmap	region	

blocked	by	SMAP	

gadget	functions	(e.g.	
call_usermodehelper)	

shortcuts	
patched	

native_write_cr4()	

6	

Challenge 2. ill-suited exploit primitive

•  Lack of stack pivoting gadget in
Linux kernel

•  traditional stack pivoting gadget
blocked by SMAP because it accesses
user-space memory

•  Intra-kernel stack pivoting gadget
sometimes does not exist.

•  Insufficient control over registers for
invoking kernel functions

Fake	stack	in		
User-Space	

pop	***,	ret	
…	
pop	***,	ret	
…	

blocked	by		
SMAP		

call	rax	

xchg	eax,	esp	;	ret	 xchg	rdi,	rsp	;	ret	

Lack	of	
gadget	

Fake	stack	in	
kernel-space	
pop	***,	ret	
…	
pop	***,	ret	
…	

call	copy_from_user	

smash	current	
kernel	stack

Insufficient	
register	control	

copy_from_user(dst,	src,	size) 7	

Challenge 3. exploit path pitfall
User-space

Kernel-space

Trigger	
vuln.

CFHP

kernel panic pitfall

CFHP

Trigger	
vuln.

User-space

Kernel-space

Trigger	
vuln.

CFHP

pitfall

smash	
Kern.		
Stack

exec.	
ROP	
chain	

Our	Solution:	“single-shot”	exploitation

8	

Roadmap

•  Challenges
• Our Technique
•  Evaluation with real-world Linux kernel vulnerabilities
•  Conclusion

9	

Overview of “single-shot” Exploitation

CFHP

“Blooming	gadget”

indirect	jmp/call

…

…	
indirect	jmp/call	
…	
…	
indirect	jmp/call

“Bridging	gadget”

…	
indirect	jmp/call

“Auxiliary	gadget”

call		copy_to_user	
…	
return

“Disclosure	gadget”

call		copy_from_user	
…	
ret

“Stack	overflow	gadget”
Arbitrary	
ROP		

payload

10	

•  copy_from_user(dst, src, size)
•  Data channel between user-space

and kernel-space
•  Destination is kernel stack for 91%

invocations of copy_from_user() in
Linux kernel 4.15.

•  Short return
•  Check for non-zero return value and

returns -EFAULT
•  Short return path exists for more

than 99% invocations in Linux kernel
4.15

static	long	bsg_ioctl(struct	file	*file,	unsigned	int	cmd,	
unsigned	long	arg){	

				struct	sg_io_v4	hdr;	//	destination	is	local	variable	
				…	

				if	(copy_from_user(&hdr,	uarg,	sizeof(hdr)))	{	

								return	-EFAULT;	//	short	return		
				}	

	

Stack smashing gadget

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully
migrated

data failing to
copy

ROP payload
stack canary

ROP payload

n+1

11	

•  copy_to_user(to, from, n)
•  Copying kernel data to user-

space
•  Src is usually kernel stack (82%

in 4.15)
•  Short return path exists

•  Problem:
•  Caller of copy_to_user also

protected by stack canary

SYSCALL_DEFINE2(gettimeofday,	struct	timeval	*,	tv,	struct	
timezone	*,	tz){		
				struct	timeval	ktv;		
				…	
				if(copy_to_user(tv,	&ktv,	sizeof(ktv)))	{	
								return	-EFAULT;		
				}		
				…	

Bypassing stack canary: stack disclosure gadget

stack canary

userspace kernel

(mapped)
P1

P2

n (=rdx)

rsp (=rsi=src)

stack canary

pagefault

rdi

(unmapped)

data successfully
migrated

data failing to
copy12	

•  Auxiliary function gadget
•  Protected by stack canary
•  controllable indirect call

•  Leaking stack canary by
combination of

•  Auxiliary function, and
•  Canary disclosure gadget

Bypassing stack canary (cont.)
 push rbp
 mov rbp, rsp
 push r12
 ...
 sub rsp, 58h
 mov rax, gs:qword_28
 mov [rbp-30h], rdi
 mov rax, [rdi]
 call rax
 ...

Auxiliary function gadget
 lea rsi, [rbp-60h]
 call _copy_to_user
 test rax, rax
 jnz fail
 ...
fail:
 mov rbx, FFFFFFF2h
 jmp exit
 ...

exit:
 mov rcx,
[rbp-30h]
 xor rcx,
gs:qword_28
 jnz panic
 add rsp, 60h
 pop rbx
 ...
 ret

Canary disclosure gadget

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

stack canary

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

stack canary

13	

static	void	aliasing_gtt_unbind_vma(struct	i915_vma	
*vma)	{	

				…	
				vma->vm->clear_range(vma->vm,	vma>node.start,	
vma->size);	

…	
}

Enhancing register control: blooming gadget
•  Linux kernel code have features of

object-oriented programming
•  “self” passed as first parameter

•  Blooming gadget:
•  Given register rdi is under control
•  A family of kernel functions containing an

indirect call
•  target is controllable
•  three parameters of the indirect call are

controllable

14	

Bridging gadget
•  Bridging gadget

•  Containing multiple controllable
indirect calls

•  Spawning two CFHPs and combining
canary leak and stack smash into a
single shot.

Layout	of	struct	“regmap”

lock unlock

A B .physmap	page		
under	our	control

map	

auxiliary	&	
disclosure	gadget

Stack	smash	
gadget

void	regcache_mark_dirty(struct	regmap	*map){	
			map->lock(map->lock_arg);//	the	1st	control-flow	
hijack		
			map->cache_dirty=true;	

			map->no_sync_defaults=true;	

			map->unlock(map->lock_arg);//	the	2nd	control-
flow	hijack	

}

15	

Implementation
•  Collecting candidate gadgets with static analysis

•  Built on IDA-Pro SDK 6.95
•  Taking Exploit chain identification as a tree search

problem
•  28 workers to search different sub-trees concurrently

•  Stitching gadgets with symbolic execution
•  Built on angr
•  Initialization: QEMU snapshot
•  Pruning: checking constraints satisfiability at key locations
•  State explosion mitigations:

•  Giving up after 20 steps for each stage
•  Entering a loop for less than 5 times.

CFHP

…

…

…

…

…

Blooming	

Bridging

Auxiliary

Canary	
disclosure

Stack	
overflow
16	

Evaluation
•  Test Cases:

•  16 CVEs + 3 CTF challenges

•  Comparing with previous exploit
generation/hardening techniques

•  FUZE: relying on an exploit technique
named “CR4 hijacking”

•  Not bypassing VMM-based hypervisor
•  Not bypassing exploitation pitfalls

•  Q : relying on stack-pivoting gadget
which is not available in the kernel
binary image

17	

Evaluation (cont.)

•  Finding exploit chain in
50 wall clock minutes

• Generating tens of
thousands of exploit
chains

• Hard to defeat because
the gadget could not be
easily removed.

18	

Conclusions

• New technique: Single-shot exploitation is an effective kernel exploitation
technique

•  Reduction: From “ROP is Turing Complete” to “control-flow hijacking is Turing Complete”

• New tool: Kepler is able to convert Linux kernel ROP bootstrapping task into a
bounded tree-search problem and facilitate evaluation of control-flow hijacking
primitive

•  Source: https://github.com/ww9210/ kepler-cfhp

•  Suggestion: Kernel CFI should be deployed because other mitigations hardly
stop exploitation

19	

Thank you.

20	

kernel state
RIP: 0xdeadbeef RSP: x
 x : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot”
exploit

Arbitrary ROP
payload

Enhancing CFHP

Performing Static
analysis

Kernel Binary
Image

kernel state’
RIP: 0xdeadbeef RSP: x’

 x’ : 0x41414141 0x41414141
x’ + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain

21	

