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Background 
• OS kernels are written in low-level languages C/C++ 

•  Linux: C 
•  Windows: C  and C++ 

• OS kernels are prone to memory corruption bugs 
•  Out of Bounds Access, Use-After-Free, data race and even type confusion (in C++ 

components) 
•  Bugs in OS kernel are plenty and many of them are exploitable 
•  Exploit Mitigation: make exploit harder with ignorable cost 

•  The cost to prove exploitability is increasing 
•  Exploitability: a predicate related to each bug 
•  A concrete “kernel exploit” could serve as a proof of exploitability 
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Background (cont.) 
•  Automatic exploit generation systems: capable of generating concrete exploits 
•  Automatic exploit generation systems in two steps: 

1.  Identifying exploit primitives  
2.  Evaluating exploit primitives 

•  Exploit primitive: 
•  A machine state which empowers an attacker to craft an exploit (a.k.a. programming weird 

machine) 
•  Data flow: Writing 8 bytes anywhere, write 1 byte to adjacent heap chunk etc. 
•  Control flow: Control-flow hijacking  

•  Control-flow hijacking primitive is one of the most popular exploit primitives. 
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Crafting a control-flow hijacking kernel exploit 
•  Step 1. Adjusting parameters of system calls and memory 

layout 
•   [USENIX-SEC18][CCS 16] 

Getting	a	control-flow	
hijacking	primitive	

Adjusting	syscall	
parameters	and		memory	

layout	

Executing	exploitation	
payload	

1 

2 

3 
[USENIX-SEC14] Vasileios et al., ret2dir: Rethinking Kernel Isolation 
[CCS 16] Xu et al., From Collision To Exploitation: Unleashing Use-After-Free 
Vulnerabilities in Linux Kernel. 
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for Exploitation. 
[P0 blog] Andrey Konovalov. Exploiting the Linux kernel via packet sockets. 
[POC2016] Dong-hoon you. New reliable android kernel root exploitation techniques. 

•  Step 2. Getting a control-flow hijacking primitive 
•  [P0 blog][POC16] 

•  Step 3. Payload execution 
•  [USENIX-SEC 14] 
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Key Step: from control-flow hijack to ROP payload execution 

Getting	a	control-flow	
hijacking	primitive	

How	to	bootstrap	a	ROP	attack?	(e.g.	Transition	S	->	S’)	

Executing	exploitation	
payload	(e.g.	through	

ROP)	

Semantic	of	an	example		ROP	payload	
	

commit_creds(prepare_kernel_cred(0))	
...	
(fixing	context	and	safely	return	to	
userspace)	
...	
execve(“/bin/sh”,NULL,NULL)	

Kernel	State	S	
gdb>	info	registers	
  rsp: x rip: 0x41424344 !
  … !
gdb> x/10gx $rsp!
X    : ???????? ???????? !
X+8  : ???????? ???????? !
 

Kernel	State	S’	
gdb>	info	registers	
  rsp: x’ rip: 0x51525354 !
  … !
gdb> x/10gx $rsp!
X’    : 41414141 41414141 !
X’+8  : 41414141 41414141 !
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Challenge 1. kernel exploit mitigations 

kernel	
space	

user	
space	

Control	register	

virtualization-based	hypervisor	

cr4	

corrupted	code	ptr	shellcode	

blocked	by	SMEP	

corrupted	data	ptr	

crafted	data	
object	

protected	by	hypervisor	

physmap	

Non-executable	
physmap	region	

blocked	by	SMAP	

gadget	functions	(e.g.	
call_usermodehelper	)	

shortcuts	
patched	

native_write_cr4()	
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Challenge 2. ill-suited exploit primitive  

•  Lack of stack pivoting gadget in 
Linux kernel 

•  traditional stack pivoting gadget 
blocked by SMAP because it accesses 
user-space memory 

•  Intra-kernel stack pivoting gadget 
sometimes does not exist. 

•  Insufficient control over registers for 
invoking kernel functions 

Fake	stack	in		
User-Space	

pop	***,	ret	
…	
pop	***,	ret	
…	

blocked	by		
SMAP		

call	rax	

xchg	eax,	esp	;	ret	 xchg	rdi,	rsp	;	ret	

Lack	of	
gadget	

Fake	stack	in	
kernel-space	
pop	***,	ret	
…	
pop	***,	ret	
…	

call	copy_from_user	

smash	current	
kernel	stack 

Insufficient	
register	control	

copy_from_user(dst,	src,	size) 7	



Challenge 3. exploit path pitfall 
User-space 

Kernel-space 

Trigger	
vuln. 

CFHP 

kernel panic pitfall 

CFHP 

Trigger	
vuln. 

User-space 

Kernel-space 

Trigger	
vuln. 

CFHP 

pitfall 

smash	
Kern.		
Stack 

exec.	
ROP	
chain	

Our	Solution:	“single-shot”	exploitation 
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Roadmap 

•  Challenges 
• Our Technique 
•  Evaluation with real-world Linux kernel vulnerabilities 
•  Conclusion 
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Overview of “single-shot” Exploitation 

CFHP 

“Blooming	gadget” 

indirect	jmp/call 

… 

…	
indirect	jmp/call	
…	
…	
indirect	jmp/call 

“Bridging	gadget” 

…	
indirect	jmp/call 

“Auxiliary	gadget” 

call		copy_to_user	
…	
return 

“Disclosure	gadget” 

call		copy_from_user	
…	
ret 

“Stack	overflow	gadget” 
Arbitrary	
ROP		

payload 
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•  copy_from_user(dst, src, size) 
•  Data channel between user-space 

and kernel-space 
•  Destination is kernel stack  for 91% 

invocations of copy_from_user() in 
Linux kernel 4.15. 

•  Short return 
•  Check for non-zero return value and 

returns -EFAULT 
•  Short return path exists for more 

than 99% invocations in Linux kernel 
4.15 

static	long	bsg_ioctl(struct	file	*file,	unsigned	int	cmd,	
unsigned	long	arg){	

				struct	sg_io_v4	hdr;	//	destination	is	local	variable	
				…	

				if	(copy_from_user(&hdr,	uarg,	sizeof(hdr)))	{	

								return	-EFAULT;	//	short	return		
				}	

	
 

Stack smashing gadget 

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully 
migrated

data failing to 
copy

ROP payload
stack canary

ROP payload

n+1
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•  copy_to_user(to, from, n) 
•  Copying kernel data to user-

space 
•  Src is usually kernel stack (82% 

in 4.15) 
•  Short return path exists 

•  Problem: 
•  Caller of copy_to_user also 

protected by stack canary 

SYSCALL_DEFINE2(gettimeofday,	struct	timeval	*,	tv,	struct	
timezone	*,	tz){		
				struct	timeval	ktv;		
				…	
				if(copy_to_user(tv,	&ktv,	sizeof(ktv)))	{	
								return	-EFAULT;		
				}		
				…	
 

Bypassing stack canary: stack disclosure gadget 
 

stack canary

userspace kernel

(mapped)
P1

P2

n (=rdx)

rsp (=rsi=src)

stack canary

pagefault

rdi

(unmapped)

data successfully 
migrated

data failing to 
copy12	



•  Auxiliary function gadget 
•  Protected by stack canary 
•  controllable indirect call 

•  Leaking stack canary by 
combination of  

•  Auxiliary function, and 
•  Canary disclosure gadget 

Bypassing stack canary (cont.) 
  push    rbp
  mov     rbp, rsp
  push    r12
  ...
  sub     rsp, 58h
  mov     rax, gs:qword_28
  mov     [rbp-30h], rdi
  mov     rax, [rdi]
  call    rax
  ...

Auxiliary function gadget
  lea     rsi, [rbp-60h]
  call    _copy_to_user
  test    rax, rax
  jnz     fail
  ...
fail:
  mov     rbx, FFFFFFF2h
  jmp     exit
  ...

exit:
  mov     rcx, 
[rbp-30h]
  xor     rcx, 
gs:qword_28
  jnz     panic
  add     rsp, 60h
  pop     rbx
  ...
  ret

Canary disclosure gadget

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

stack canary

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

stack canary
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static	void	aliasing_gtt_unbind_vma(struct	i915_vma	
*vma)	{	

				…	
				vma->vm->clear_range(vma->vm,	vma>node.start,	
vma->size);	

…	
} 

Enhancing register control: blooming gadget 
•  Linux kernel code have features of 

object-oriented programming  
•  “self” passed as first parameter 

•  Blooming gadget: 
•  Given register rdi is under control  
•  A family of kernel functions containing an 

indirect call   
•  target is controllable 
•  three parameters of the indirect call are 

controllable 
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Bridging gadget 
•  Bridging gadget 

•  Containing multiple controllable 
indirect calls  

•  Spawning two CFHPs and combining 
canary leak and stack smash into a 
single shot.  

 

Layout	of	struct	“regmap” 

lock unlock 

A B .physmap	page		
under	our	control 

map	
 

auxiliary	&	
disclosure	gadget 

Stack	smash	
gadget 

void	regcache_mark_dirty(struct	regmap	*map){	
			map->lock(map->lock_arg);//	the	1st	control-flow	
hijack		
			map->cache_dirty=true;	

			map->no_sync_defaults=true;	

			map->unlock(map->lock_arg);//	the	2nd	control-
flow	hijack	

} 
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Implementation 
•  Collecting candidate gadgets with static analysis 

•  Built on IDA-Pro SDK 6.95 
•  Taking Exploit chain identification as a tree search 

problem 
•  28 workers to search different sub-trees concurrently 

•  Stitching gadgets with symbolic execution 
•  Built on angr 
•  Initialization: QEMU snapshot 
•  Pruning: checking constraints satisfiability at key locations  
•  State explosion mitigations: 

•  Giving up after 20 steps for each stage 
•  Entering a loop for less than 5 times. 

CFHP 

… 

… 

… 

… 

… 

Blooming	 

Bridging 

Auxiliary 

Canary	
disclosure 

Stack	
overflow 
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Evaluation  
•  Test Cases: 

•  16 CVEs + 3 CTF challenges 

•  Comparing with previous exploit 
generation/hardening techniques 

•  FUZE: relying on an exploit technique 
named “CR4 hijacking”  

•  Not bypassing VMM-based hypervisor 
•  Not bypassing exploitation pitfalls 

•  Q : relying on stack-pivoting gadget 
which is not available in the kernel 
binary image 

17	



Evaluation (cont.) 

•  Finding exploit chain in 
50 wall clock minutes  

• Generating tens of 
thousands of exploit 
chains 

• Hard to defeat because 
the gadget could not be 
easily removed. 
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Conclusions 

• New technique: Single-shot exploitation is an effective kernel exploitation 
technique 

•  Reduction: From “ROP is Turing  Complete” to “control-flow hijacking is Turing Complete” 

• New tool: Kepler is able to convert Linux kernel ROP bootstrapping task into a 
bounded tree-search problem and facilitate evaluation of control-flow hijacking 
primitive 

•  Source: https://github.com/ww9210/ kepler-cfhp 
 

•  Suggestion: Kernel CFI should be deployed because other mitigations hardly 
stop exploitation 
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Thank you. 
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kernel state 
RIP: 0xdeadbeef RSP: x
  x  : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing 
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot” 
exploit

Arbitrary ROP 
payload

Enhancing CFHP

Performing Static 
analysis

Kernel Binary 
Image

kernel state’
RIP: 0xdeadbeef RSP: x’

  x’  : 0x41414141 0x41414141
x’ + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain
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