
SLAKE: Facilitating Slab Manipulation for Exploiting
Vulnerabilities in the Linux Kernel

Yueqi Chen
ychen@ist.psu.edu

The Pennsylvania State University

Xinyu Xing
xxing@ist.psu.edu

The Pennsylvania State University

ABSTRACT

To determine the exploitability for a kernel vulnerability, a secu-

rity analyst usually has to manipulate slab and thus demonstrate

the capability of obtaining the control over a program counter or

performing privilege escalation. However, this is a lengthy process

because (1) an analyst typically has no clue about what objects

and system calls are useful for kernel exploitation and (2) he lacks

the knowledge of manipulating a slab and obtaining the desired

layout. In the past, researchers have proposed various techniques

to facilitate exploit development. Unfortunately, none of them can

be easily applied to address these challenges. On the one hand, this

is because of the complexity of the Linux kernel. On the other hand,

this is due to the dynamics and non-deterministic of slab variations.

In this work, we tackle the challenges above from two perspec-

tives. First, we use static and dynamic analysis techniques to explore

the kernel objects, and the corresponding system calls useful for

exploitation. Second, we model commonly-adopted exploitation

methods and develop a technical approach to facilitate the slab

layout adjustment. By extending LLVM as well as Syzkaller, we

implement our techniques and name their combination after SLAKE.

We evaluate SLAKE by using 27 real-world kernel vulnerabilities,

demonstrating that it could not only diversify the ways to perform

kernel exploitation but also sometimes escalate the exploitability

of kernel vulnerabilities.

CCS CONCEPTS

· Security and privacy → Operating systems security; Software

security engineering;

KEYWORDS

OS Security; Vulnerability Exploitation;

ACM Reference Format:

Yueqi Chen and Xinyu Xing. 2019. SLAKE: Facilitating Slab Manipulation

for Exploiting Vulnerabilities in the Linux Kernel. In Proceedings of 2019

ACM SIGSAC Conference on Computer and Communications Security, London,

United Kingdom, November 11–15, 2019 (CCS’19), 16 pages.

https://doi.org/10.1145/3319535.3363212

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’19, November 11–15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363212

1 INTRODUCTION

Despite extensive code review, a Linux kernel, like all other soft-

ware, still inevitably contains a large number of bugs and vulnerabil-

ities [42]. Compared with vulnerabilities in user-level applications,

a vulnerability in kernel code is generally more disconcerting be-

cause kernel code runs with a higher privilege and the successful

exploitation of a kernel vulnerability could provide an attacker with

full root access.

One straightforward solution to minimize the damage of Linux

kernel defects is to have software developers and security analysts

patch all the bugs and vulnerabilities immediately. However, even

though allowing anyone to contribute to code development and

fix, the Linux community still lacks the workforce to sift through

each software bug timely. As such, the Linux community typi-

cally prioritizes kernel vulnerability remediation based on their

exploitability [30] (i.e., assessing a software bug based on ease of

its exploitation).

To determine the exploitability for kernel vulnerabilities, an

analyst typically needs to manipulate slab (i.e., heap in kernel),

manually craft working exploits and demonstrate the capability

in obtaining control over a program counter or escalating privi-

lege for a user process. In general, this is a time-consuming and

labor-intensive process. On the one hand, this is because given a

kernel vulnerability, a security analyst lacks the knowledge about

what kernel objects and system calls are useful for vulnerability

exploitation. On the other hand, this is because even if the analyst

figures out the kernel objects, as well as the corresponding system

calls, he may still have no clue about how to use them to obtain the

desired slab layout accordingly.

In the past, there are many techniques developed to facilitate the

exploit development (e.g., [3, 4, 6, 19, 20, 24, 35, 46, 48]), and a recent

research work indicates an analyst can use various test cases to ex-

plore the desired memory layout for vulnerability exploitation [15].

For the two following reasons, none of these techniques, however,

can be directly applied or tweaked to tackle the aforementioned

challenges. First, a Linux kernel is a complex system, in which many

kernel objects useful for exploitation cannot be allocated through

test cases regularly used. As we will show in Section 6, even merely

using Syzkaller (a kernel fuzzing tool) [13] to generate test cases,

we are still not able to pinpoint sufficient kernel objects suitable for

kernel exploitation. Second, a Linux kernel contains many routines,

making the slab very dynamic and non-deterministic. Even if an

analyst could observe the desired memory layout through one test

case, he is highly unlikely to use the same test case to obtain that

layout as he expects.

In this work, we propose a new approach, to facilitate the develop-

ment of working exploits for various kinds of kernel vulnerabilities

or, more precisely, a technique to facilitate slab manipulation with

the goal of obtaining the capability in hijacking control flow1. We

name our technique after SLAKE, standing for SLAb manipulation

for Kernel Exploitation. Technically speaking, it tackles the chal-

lenges above from the two angles. First, SLAKE performs static and

dynamic analysis to identify the objects useful for kernel exploita-

tion and track down corresponding system calls. Second, SLAKE

models kernel exploitation methods commonly adopted. Using the

model, it then designs a technical approach to facilitate the capabil-

ity of security analysts in adjusting slab layout and thus obtaining

the control over the program counter.

Given the pioneering research works (e.g., [24, 45, 46]), we do not

claim SLAKE is the first technique designed for kernel exploitation

facilitation. However, we argue that it is the first work that can

facilitate the manipulation of the slab and thus assist an analyst in

hijacking the control over kernel execution. Besides, SLAKE is the

first work that can facilitate kernel exploitation for various types

of kernel vulnerabilities (e.g., UAF, Double Free, and OOB). Using

27 real-world kernel vulnerabilities, we show that SLAKE could

not only identify the kernel objects and system calls commonly

adopted by professional analysts for kernel exploitation but more

importantly, pinpoint objects and system calls that have never

been used in the public exploits. We argue this is a very beneficial

characteristic for security analysts because, as we will show in

Section 6, this could significantly diversify the working exploits

and potentially escalate the exploitability for kernel vulnerabilities.

In summary, this paper makes the following contributions.

• We design a new technical approach that utilizes static/dy-

namic analysis to identify the kernel objects and system calls

useful for kernel exploitation.

• We model commonly-adopted kernel exploitation methods

and then design a manipulation method to adjust a slab and

thus obtain the layout desired for kernel exploitation.

• By extending LLVM and Syzkaller, we implement SLAKE

and demonstrate its utility in crafting working exploits by

using 27 real-world vulnerabilities in the Linux kernel.

The rest of this paper is organized as follows. Section 2 describes

the background and the key challenges of this work. Section 3 spec-

ifies how to utilize static and dynamic analysis to explore objects

and system calls useful for kernel exploitation. Section 4 introduces

how to adjust slab layout. Section 5 and 6 describe the implemen-

tation and evaluation of SLAKE. Section 7 discusses some related

issues and future work, followed by the discussion of related work

in Section 8. Finally, we conclude the work in Section 9.

2 BACKGROUND AND CHALLENGES

In this section, we first describe the problem scope, assumptions,

and objectives of this work. Then, we introduce the technical back-

ground, followed by the discussion of kernel exploitation chal-

lenges.

2.1 Problem Scope, Assumptions and Goals

Problem scope. This work focuses only on developing exploita-

tion techniques for those kernel vulnerabilities that result in the

corruption of the memory managed by SLAB/SLUB allocator. We

1As we will clarify in Section 2.1, this work focuses on the ability to hijack control
flow but not that to escalate privilege for a userland process.

claim the problem in this scope is meaningful and non-trivial. This

is because, after being triggered, most kernel vulnerabilities only

demonstrate the capability in corrupting memory regions tied to

the SLAB/SLUB and, more importantly, there has not yet been a

generic, systematic approach that could facilitate the manipulation

of kernel memory layout and thus benefit the exploitation of such

vulnerabilities.

Assumptions. By definition, the capability of a vulnerability is

a power, indicating at which memory addresses the vulnerability

gives an adversary the ability to overwrite data freely. In this work,

we consider the capability of a vulnerability through a PoC pro-

gram, which could panic kernel execution but not perform actual

exploitation. Under the assistance of address sanitizer KASAN [10]

and other debugging tools (e.g., GDB [40]), a security researcher

could manually learn the capability of a vulnerability. It should

be noted we do not assume researchers could go beyond the ca-

pability manifested by a PoC and find more powerful capability

for a target vulnerability. For example, if the PoC demonstrates

the ability to overwrite only one byte, but the vulnerability could

actually provide the capability of performing an arbitrary write, we

conservatively assume a researcher could obtain only the one-byte

overwriting capability.

In addition, we assume that a capability of controlling program

counter directly implies the exploitability of a vulnerability. On

the one hand, this is because many previous works have already

demonstrated an adversary can easily bypass kernel mitigation

and complete successful exploitation as long as he could hijack the

control of kernel execution [2, 7, 9, 14, 21ś23, 27, 28, 32, 45]. On

the other hand, this is because, with the ability to hijack kernel

execution, an adversary can always convert this capability into a

way to overwrite critical kernel object and thus carry out privilege

escalation or information leakage [17].

Goals. As is mentioned in the section above, the goals of this work

are in two folds. First, it aims to provide security researchers with

the ability to identify useful kernel objects and corresponding sys-

tem calls. Second, it aims to facilitate security researchers’ capability

in obtaining a desired memory layout for kernel exploitation. As

a result, different from the research in exploitation automation

(e.g., [3, 6]), we focus on ❶ building an automated approach to help

security analysts identify useful kernel objects and system calls, ❷

building a technical approach to facilitate researchers’ capability in

memory layout manipulation. In fact, the identification of object

and system calls, as well as memory manipulation are just one key

component of kernel exploitation. Therefore, we do not claim the

work is an end-to-end automated approach for kernel exploitation.

2.2 Technical Background

Here, we briefly introduce how SLAB/SLUB allocator works in

Linux kernel, followed by the kernel exploitation techniques com-

monly adopted in the real world.

2.2.1 SLAB/SLUB Allocator. SLAB/SLUB allocator organizes

physical memory in a unit of cache. Kernel objects in the same

cache share the same type or have similar sizes. Inside each cache

are a set of slabs which are contiguous pages. For each newly cre-

ated slab, SLAB/SLUB allocator partitions it into multiple individual

slots. For SLUB allocator, each unoccupied slot contains a meta-

data header which stores the address of the next slot unoccupied.

Through metadata, unoccupied slots are organized in the form of a

singly linked list with a dummy head freelist. Slightly different

from SLUB allocator, SLAB allocator does not utilize metadata head-

ers to organize the slots unoccupied. Rather, it employs an index

array also named freelist to implement the logic of the linked

list. When other kernel components request a memory region for a

new object, both SLUB and SLAB allocator retrieve and assign the

first slot of the list to hold the new object and update the freelist.

When an object is deallocated (freed), both SLUB and SLAB alloca-

tor reclaim the freed slot and add it back to the beginning of the

linked list. As such, SLAB/SLUB allocator work in a fashion of LIFO

(Last In, First Out).

2.2.2 Kernel Exploitation Approaches. The kernel exploitation

can be viewed as a three-step procedure. ❶ an adversary summa-

rizes the type of a target vulnerability as well as at which memory

addresses he could manipulate data freely (i.e., the capability of cor-

rupting memory regions). ❷ The adversary determines the specific

exploitation approaches to obtaining the ability to hijack control

flow. ❸ Using the primitive of control flow hijack, the adversary dis-

ables kernel mitigation and protection, and thus performs ultimate

exploitation.

Generally speaking, four exploitation approaches could lead to

a control over the program counter. In the following, we briefly

introduce these exploitation approaches. It should be noted that

this work does not discuss the techniques developed for vulnerabil-

ity capability summary nor those for bypassing mitigation. As is

described in Section 2.1, they are out of the scope of this research

work.

I. Manipulation through OOBwrite. Given a vulnerability with

the ability to perform an out-of-bounds (OOB) write, there are

two common approaches to hijacking control flow. The first is

to overwrite a function pointer in the adjacent object and then

dereference that pointer for exploitation. For another approach, the

exploitation overwrites a data pointer in the adjacent object and

then dereference a function pointer through that data pointer. To

illustrate this, Figure 1a depicts an example. In regular operations,

we assume Linux kernel dereferences the function pointer fptr

֒→ through the pointer ptr referencing the kernel object A. Using

the OOB write, an attacker could first overwrite the data object

pointer ptr, referencing it to a memory region under his control

(e.g., physmap [20, 37] or userland memory). In the memory area

under the attacker’s control, he could then carefully craft a fake

data object with the function pointer fptr referencing the target of

the attacker’s desire.

II. Manipulation through UAF. Different from the manipula-

tion approaches tied to OOB vulnerabilities, use-after-free (UAF)

vulnerabilities have unique exploitation approach. Given a UAF

vulnerability, an adversary first selects a kernel object (i.e., a spray

object), the content of which is completely under his control. Then,

he overlays that object on top of a vulnerable object. In this way,

the attacker could overwrite the critical data (e.g., function or data

object pointer) in that vulnerable object. Similar to the aforemen-

tioned approach, with the ability to manipulate a function or data

object pointer, an attacker could easily obtain control over the

kernel execution.

III. Manipulation through double free. With respect to the

double free vulnerability, when the vulnerability is triggered, the

metadata header of a vulnerable object refers to itself. As such, its

exploitation could be achieved through the process below. First,

an adversary carefully selects a victim object. Second, through

heap spray, he uses that selected object to take over the freed slot

pertaining to that self-referenced metadata. Third, he selects a spray

object and allocates that object. As is shown in Figure 1b, after the

allocation of the victim object, the freelist is updated with the

value of metadata header, and the freelist references the victim

object selected. As a result, the adversary can leverage the spray

object to overwrite the function or object pointer residing in the

victim object. Again, similar to the aforementioned exploitation

approach tied to OOB, this allows the adversary to obtain the control

over the program counter easily.

IV. Manipulation through metadata corruption. In addition

to the manipulation of function and data object pointers, all the

aforementioned vulnerabilities provide an attacker with the poten-

tial to tamper with the metadata header of free slots. As such, for

all the aforementioned vulnerability, an alternative manipulation

approach is to overwrite metadata header and trick SLUB alloca-

tor into allocating a victim object to a memory region under an

attacker’s control. To illustrate this, Figure 1c shows an example.

Through the capability of a vulnerability, an attacker first over-

writes the metadata header, referencing it to a region under the

attacker’s control. Since the metadata header indicates the next

unoccupied region, the attacker could allocate a series of objects

and force one victim object appearing at that desired memory re-

gion. He could easily manipulate the function pointer or data object

pointer in the victim object, trigger the function pointer dereference

and thus obtain the control over the program counter.

2.3 Key Challenges

Despite the commonly-adopted approaches mentioned above, it is

still challenging for an adversary and even a professional security

analyst to perform a successful exploitation. This is mainly because

an adversary lacks the following knowledge.

❶ Which kernel objects are suitable for exploitation? In ker-

nel exploitation, an adversary needs to select an exploitation ap-

proach and corresponding object(s). Take an OOB vulnerability for

example. To hijack control flow through this vulnerability, an ad-

versary typically overwrites the critical data in the adjacent object.

However, it is common that the adjacent object may not contain

critical data such as function or object pointers. Therefore, one

common operation for that adversary is to allocate an object (with

a function pointer enclosed) to the corresponding location prior

to the trigger of that vulnerability. However, a Linux kernel en-

closes many objects. In order to find that appropriate object for his

exploitation, the adversary generally has to seek through all the

objects. In this process, he also has to take the vulnerable object

into consideration. This is simply because SLUB/SLAB allocator

manages and groups data objects based on their types and sizes,

and only the data objects sharing the same type or similar sizes

could be placed in the same slab.

Before trigger OOB write

ptr

vul obj

fptr benign target

obj A

vtm obj

After trigger OOB write

overwritten ptr

vul obj

fptr malicious target

fake obj in memory region

under attacker’s control

vtm obj

(a) Exploitation through OOB write

!"##$%&'

After trigger double free

self-referenced free slot

metadata

header

vtm obj

!"##$%&'

After allocate vtm obj

benign targetptr

!"##$%&'

After allocate spray obj

spray/vtm obj

malicious targetptr

e trigger OOB write

(b) Exploitation through double free

$%&'

ee

$%&'

$%&'

()**

free slot

overwritten

metadata header

After corrupt metadata header

vul obj free slot

!"##$%&'

free slot in memory region

under attacker’s control

()**

()**

Before corrupt metadata header

vul obj free slot

metadata header

free slot

!"##$%&'

e trigger OOB write

(c) Exploitation through corrupting metadata

Figure 1: The illustration of some kernel exploitation approaches.

❷ How to (de)allocate objects and dereference correspond-

ing pointers? An adversary typically utilizes a set of system calls

to (de)allocate selected objects or dereference pointers through

these objects. In a Linux kernel, there are hundreds of system calls

with various arguments. Given a target object, there has not yet

been a knowledge base indicating which group of system calls can

be used for its (de)allocation, nor prior knowledge specifying which

system calls could be applied to dereference a function pointer

through that target object. Under this situation, when performing

kernel exploitation, adversaries typically seek the kernel objects

repeatedly adopted across vulnerabilities as well as their corre-

sponding system calls. From the perspective of adversaries, this not

only restricts the ways to perform exploitation but more impor-

tantly leads vulnerabilities unexploitable. From the viewpoint of

defenders, repeatedly-used data objects provide security analysts

with an opportunity to build intrusion signatures and thus ease

their identification for the potential intrusion.

❸ How to systematically adjust system calls to obtain the

desired slab layout? In fact, even if an adversary tracks down the

system calls for a particular object, it is still difficult for him to obtain

the desired memory layout. This is because, when allocating the

target object, in addition to the object of interest, the system calls

identified also allocate or deallocate other kernel objects, resulting

in unexpected variation inmemory layout. Take the aforementioned

OOB case for example again. The OOB vulnerability provides an

adversary with the ability to overwrite critical data in its neighbor

object. Using a set of system calls, an adversary could allocate a

victim object containing a function or object pointer on the target

slab. However, along with the allocation of the victim object, the

system calls at the first placemight allocate irrelevant kernel objects,

which makes the victim object turn out to be at an unexpected spot.

When this situation occurs, adversaries typically look for alternative

system calls or adjust memory layout in an ad-hoc manner. In

practice, there is no guarantee to find a memory layout through

these two approaches. As a result, the side effect involved by system

calls further reduces the number of system calls available and even

jeopardizes the exploitability of that vulnerability.

3 OBJECT & SYSCALL IDENTIFICATION

To tackle the aforementioned challenges ❶ and ❷, an instinct re-

action is to extensively enumerate system calls through a large

corpus of test cases or fuzz testing and, at the same time, observe

the change of objects on slab as well as keep track of function

pointer dereference. In this way, one could easily correlate the sys-

tem calls to the objects of his interest as well as corresponding

function pointer dereference. For the following two reasons, this

approach is however not suitable for our problem, even though a

similar idea has already been applied to explore memory layout

manipulation in the userland exploitation [15].

First, the code space of a Linux kernel is typically significantly

larger than that of a userland application. It is impossible for an

adversary to use regular test cases to identify all the sites where the

objects of his interest are (de)allocated and corresponding function

pointers are dereferenced. Second, Linux kernel contains hundreds

of system calls, each of which takes as input various arguments.

This makes it very inefficient to perform fuzz testing against various

system calls. As we will show in Section 6, even by using a state-

of-the-art kernel fuzzing tool, it is still difficult to track down the

objects of interest in an effective and efficient fashion.

In this section, we propose a new technical approach to tackle

the challenges ❶ and ❷ mentioned in the section above. At the

high level, our approach first identifies object types of our interest

by using static analysis. Using the type information and a set of

heuristics, our approach further pinpoints the objects of our in-

terest as well as the sites of our interest (i.e., the sites where the

objects are (de)allocated or corresponding pointers can be poten-

tially dereferenced). Along with this procedure, we record the name

of the object type, object size and the cache that holds the object.

In addition, we store the offset of function/object pointers in each

object. With these designs, we can obtain the basic information

for kernel objects. To be able to track down the system calls that

could (de)allocate and dereference the objects of our interest, our

approach performs kernel fuzzing under the guidance of a kernel

call graph. More specifically, we first perform reachability analysis

over the call graph and preserve only those system calls that could

potentially reach to the sites of our interest. With this, we can

reduce the number of system calls needed to explore and thus im-

prove the effectiveness and efficiency of system call identification.

For each site of our interest, we then perform fuzz testing using the

results of reachability analysis, exploring the actual path towards

that site. In this way, our approach can identify the arguments and

context needed for the system calls to (de)allocate and dereference

the object of our interest. In the following, we present the detail of

this approach.

3.1 Identifying Objects & Sites of Interest

In a Linux kernel, there are thousands of objects. However, they

are not equally critical for kernel exploitation. In the following, we

first introduce how we identify the kernel objects critical for ex-

ploitation. Then, we describe how we track down the sites at which

kernel (de)allocates these critical data objects. Finally, we discuss

how we identify the dummy sites where kernel could potentially

dereference a function pointer through an object of our interest (or

more precisely speaking a victim object).

3.1.1 Critical kernel objects. Given a kernel vulnerability, there

are two kinds of objects critical for the success of kernel exploita-

tion. One is the victim object typically used for exploiting OOB

and double free vulnerabilities. The other is the spray object gen-

erally used for facilitating the exploitation of UAF or double free

vulnerabilities.

Victim object. A victim object typically contains a function or an

object pointer. As is specified in Section 2.2.2, by overlaying this

object on a vulnerable object freed twice or placing this object adja-

cent to an object overflowed, an adversary might be able to leverage

the capability of the vulnerability to overwrite the pointer residing

in the object and thus obtain the control over kernel execution. In

this work, we, therefore, pinpoint victim objects by examining the

object types. To be specific, for each structure and union type in

kernel code, we examine whether it contains a function or an object

pointer. For those with a function pointer enclosed, we deem them

as victim objects. For those with an object pointer included, we track

down the type of the object that the pointer refers to by following

the dereference chain defined in each data object (e.g., objA->objB->

֒→ objC->...). We deem an object as a victim object if, through its

enclosed object pointers, we could perform multi-step dereference

and eventually identify a function pointer dereference (e.g.,objA->

֒→ objB->objC->fptr). It should be noted that, when identifying a

victim object by using multi-step dereference, we exclude struct

fields indicating a linked list (e.g., struct list_head) because such

dereference chain forms a circle which could cause our approach

to enter an unterminated procedure.

Spray object. The usages of a spray object include ❶ taking over

the slot of a freed object ś still referenced by a dangling pointer

ś as well as ❷ overwriting the content of that freed object. As a

result, a spray object does not have to contain a function or object

pointer but provides an adversary with the ability to copy arbitrary

data from userland to kernel slab. In this work, we follow this

characteristic and track down spray objects in kernel source code

as follows. First, we retrieve the argument dst of the kernel function

copy_from_user(void *dst, void *src, unsigned long length). Then, we

examine if the pointer dst is the return value of a slab allocation

function such as kmalloc() and kmem_cache_alloc().

3.1.2 Allocation and deallocation sites. In kernel exploitation,

we usually allocate and free critical objects on the slab. In order

to identify the system calls that can truly allocate or free a critical

object, we first pinpoint the sites of (de)allocation in the kernel

code source.

Allocation sites. For the functions taking the responsibility of

allocation (e.g., kmalloc()), their return value is typically of type

łvoid*ž. By looking at the site of a function call, it is therefore

difficult to know whether that allocation site ties to an object of

our interest (e.g., a victim or spray object). In order to solve this

problem, we examine the def-use chain of the return value for each

allocation function and deem the site of an allocation call as a site

of allocation if and only if that return value is cast to the type

identified.

Deallocation sites. For the kernel functions associated with deal-

location (e.g., kfree()), they typically take as input the pointer of

an object. Similar to the way to pinpoint allocation sites, we can,

therefore, track down the deallocation sites tied to victim object by

looking at the type of the object pointer passed to the deallocation

function.

3.1.3 Dummy dereference sites. For many kernel exploitation

methods, an adversary needs to dereference a function pointer

through a victim object. This typically means two different situa-

tions. One is to dereference a function pointer residing in a victim

object, and the other is to dereference a function pointer through a

multi-step dereference chain (e.g., the example shown in Figure 1a).

Technically, it is challenging to pinpoint these dereference sites in

the kernel source code through a static interprocedural data flow

analysis. On the one hand, this is because a static interprocedural

data flow analysis needs to be performed on a control flow graph

(CFG) and it is difficult to build an accurate kernel CFG. On the other

hand, this is because Linux kernel has a soft interrupt mechanism

such as Read-Copy Update (RCU), which deallocates an object and

thus dereferences a function pointer in an asynchronous fashion.

To address the problem above, we first define and identify dummy

dereference sites in Linux kernel source code. Then, we use a fuzz

testing and a dynamic data flow analysis to track down the true

dereference sites along with the corresponding system calls. In

this paper, we describe our dynamic analysis and fuzz testing in

Section 3.2.2. In the following, we describe how we define and iden-

tify dummy dereference sites. Regarding the function dereference

through an RCU mechanism, we deem the statements pertaining

to the RCU free (e.g., kfree_call_rcu() and call_rcu_sched()) as the

dummy dereference sites. This is because when these kernel func-

tions are invoked to deallocate a corresponding victim object, in an

asynchronous manner, the Linux kernel will invoke the function

referred by the function pointer residing in that victim object. With

respect to non-RCU-related dereference, we treat the dereference

of the enclosed pointer as our dummy dereference site. For exam-

ple, given a victim object A containing a pointer ptr, we deem the

dereference of the pointer ptr as our dummy dereference site.

3.2 Finding System Calls

The aforementioned static analysis approach gives us the ability

to identify at which sites a particular type of objects could be

(de)allocated (or at which sites pointers in those objects could be

dereferenced). However, it does not provide us with the information

of what system calls and their arguments we should use to inter-

act with these objects and pointers. To address this problem, one

instinctive reaction is to directly perform kernel fuzzing, through

which we could explore the system calls pertaining to the sites of

our interest. However, such an approach is not sufficiently helpful

for exploit development. As we will describe in Section 4, in order

to perform a successful kernel exploitation, an adversary usually

needs to free an object intentionally allocated for obtaining a de-

sired memory layout. In addition, he needs to dereference a function

pointer in an intentionally-allocated victim object. By simply using

kernel fuzzing, an adversary could identify the system calls and

their arguments that could deallocate the type of objects we are

interested in (or dereference the pointers of our interest). However,

this approach neither guarantees we truly deallocate the objects

we intentionally allocate nor ensure we actually dereference the

function pointer in the intentionally-allocated victim object. For

example, using the aforementioned static analysis technique, we

identify one type of object that could be potentially helpful for

exploitation. By using a sequence of system calls, we can allocate

an object A in that type to a target slot. In the memory, there have

already been multiple objects that share the same data structure as

the object A. When using fuzz testing to explore the deallocation

sites of our interest and expect the deallocation of that object A,

we might encounter a situation where the fuzz testing hits the site

of the deallocation (identified through static analysis) but actually

free a different object sharing the same type as the object A. To

tackle this issue, we develop an alternative approach that employs

an under-context fuzzing approach along with dynamic data flow

analysis to identify the system calls and corresponding arguments.

In the following, we provide the detail of this approach.

3.2.1 Panic Anchors Setup. To be able to determine whether

a system call triggers a site of our interest through fuzz testing,

we instrument kernel source code and insert panic anchors (i.e.,

customized kernel panic functions) right behind each site of our

interest. With these anchors, when kernel execution reaches the

site of our interest, we can terminate kernel execution and trace

back to the system calls and their arguments tied to corresponding

sites. However, such a trivial approach inevitably introduces false

positives. Linux kernel is a highly complex system. At the runtime,

in addition to system calls under a user’s control, many other ker-

nel routines could also trigger execution to our anchor sites, e.g.,

exception signals from processes, interrupt signals from peripheral

devices, and other kernel threads or userland processes. Without an

ability to distinguish these irrelevant kernel routines, we inevitable

introduce false positives (i.e., identifying the system calls not truly

pertaining to object (de)allocation or pointer dereference).

In order to address this issue, we therefore augment our panic

anchors with the ability to eliminate false positives. To be spe-

cific, inside each panic anchor, we first examine the kernel variable

system_state, representing the state of the kernel execution. The

panic anchor performs termination only if the value of this variable

is equal to SYSTEM_RUNNING. This is because this value indicates the

kernel is currently processing a system call requested from the

userland but not responding to other kernel routines. In addition to

the examination of kernel execution state, we check the field comm

in the data structure task_struct. The value of this field specifies the

userland program that triggers the current system call. By checking

this value, we can easily determine whether the site of the interest

is reached through the system call invoked by our fuzzing program

and thus prevent the situation where the site of our interest is hit

through other userland programs. In addition to the examination

above, we store the addresses of the objects allocated. As we will

specify in Section 3.2.2, along with under-context fuzzing, these

addresses could help us pinpoint the system calls that truly free or

dereference the objects we intentionally allocate.

3.2.2 Syscall Identification. As is mentioned above and evalu-

ated in Section 6, when identifying system calls for object (de)allocation

and pointer dereference, it is very ineffective and inefficient to ex-

haustively test various system call combinations. In this work, we

address this problem by using the method below. First, we build

a kernel call graph and perform reachability analysis from our

target (de)allocation and dereference sites. Based on the result of

reachability analysis, we then preserve only the system calls, which

could potentially reach the sites of our interests and do not require

the administrative privilege (i.e., CAP_SYS_ADMIN). In this work, we

perform fuzzing against kernel by using a system call sequence

produced from these identified system calls based on dependency

information for object (de)allocation and pointer dereference. In

the following, we provide the detail of our system call identification

method.

Syscalls for allocation. To identify the system calls tied to critical

object allocation, we perform fuzz testing against a Linux kernel.

When a test case triggers an anchor site tied to object allocation, we

profile each of the system calls by recording the kernel objects that

every individual system call (de)allocates on the slab. In addition,

we log the system calls in the test case and record their arguments

accordingly. In this work, we construct a database to store these

pieces of information. They are used for facilitating the manipula-

tion of slab layout and under-context fuzzing. In the Appendix, we

provide more details about the information stored in our database.

Syscalls for deallocation.When exploring the system calls tied

to object deallocation, we first allocate a target kernel object by

using the system calls identified through our fuzz testing. Under

this context, we then log the address of that target object and

perform fuzz testing. When a deallocation site is triggered by a test

case generated by kernel fuzzer, we check whether the address of

that deallocation object matches the address logged previously, and

preserve the corresponding system calls only if a match is identified.

With this design, we can ensure the system calls identified can

truly deallocate the object that we intentionally allocate previously.

Similarly, in addition to storing system calls and their arguments,

we profile the system calls in the test case and store corresponding

information in our database.

Syscalls for dereference. To identify the system calls that could

dereference a function pointer through a target victim object, we

first allocate that target victim object through the system calls

identified. Under that context, we then perform kernel fuzzing

and explore the system calls that can reach to the corresponding

dummy dereference site. When a test case generated by kernel

fuzzer triggers the dummy dereference site, we continue kernel

execution and record each of the statements executed (i.e., execution

trace) until kernel execution exits the current function. Using the

execution trace, we build a use-define chain on which we identify

all the function pointer dereferences, trace back through the chain

and examine whether the dereference comes through the victim

object that we allocate. Again, after confirming the dereference, we

archive system calls and their arguments in our database.

4 LAYOUT MANIPULATION

The aforementioned database provides an attacker with the fa-

cilitation of identifying the system calls tied to the kernel object

(de)allocation as well as the way to dereference corresponding func-

tion pointers. However, the kernel exploitation still lacks the ability

to systematically adjust system calls so that one could obtain the de-

sired memory layout (i.e., the challenge ❸ mentioned in Section 2.3).

To address this issue, we first seek through the aforementioned

database, matching a vulnerability capability with corresponding

objects. For each vulnerability and object pair, we then manipulate

slab by using a layout adjustment approach and thus obtain the

desired layout for kernel exploitation. In the following, we describe

the technical details.

4.1 Matching Vulnerability Capability

Recall that Section 2.2.2 describes four approaches commonly adopted

in Linux kernel exploitation. When using these approaches, an at-

tacker has to not only (de)allocate kernel objects but, more impor-

tantly, ensure the vulnerability gives him the ability to overwrite

critical data. In order to pinpoint the kernel objects from the data-

base that matches the capability of a vulnerability, we first model

the capability of a vulnerability as well as the property of a data ob-

ject. Guided by our modeling, we then design a technical approach

to pairing objects with corresponding vulnerabilities.

4.1.1 Modeling Vulnerability and Object. Given a vulnerability,

we describe the capability of that vulnerability by using the array

Ar [m]. This array contains m elements, each of which specifies

a memory region under an attacker’s control. As is depicted in

Figure 2a, each element contains a pair (l ,h). It indicates the start

and end offsets corresponding to the base address of a victim or

spray object. In between the offsets, an attacker could overwrite

data freely. As we can see from the figure, the element in the array

has no overlaps (i.e., ∀i, j, 1 ≤ i, j ≤ m, i , j, Ar [i].h < Ar [j].l or

Ar [j].h < Ar [i].l).

In addition to the capability of a vulnerability, we describe the

property of a kernel object by using the array Ap [n]. This array

consists ofn elements and each of them specifies thememory region

where critical data (i.e., pointers and metadata) are actually located.

As is illustrated in Figure 2b, each element in Ap [n] represents an

offset corresponding to the base address of a victim object. Through

the offset along with the word size2 w , we can easily pinpoint the

memory area (Ap [i] ∼ Ap [i]+w) at which the ith pointer is stored.

2The word sizes are 8 and 4 bytes for a 64-bit and 32-bit machine, respectively.

4.1.2 Pairing Vulnerability with Object. For various kernel vul-

nerabilities, we design different criteria and automated approaches

to pair kernel objects with the capability of a kernel vulnerability.

In the following, we describe the criteria. Due to the space limit,

we leave the automated approach in Appendix.

OOB write. Given a vulnerability with an OOB write capability,

there are two approaches to performing slab manipulation. One

is to directly overwrite the metadata of a freed object and then

allocate a victim object to a memory region under an attacker’s

control. The other is to place a victim object adjacent to the vul-

nerable object with the expectation of overwriting critical data

(data or function pointers) residing in the victim object. For the

first approach, the selection of victim objects is straightforward.

The victim object could be any object that shares the same cache

with the vulnerable object and encloses a pointer. For the second

approach, the selection of victim objects is slightly complicated.

To select the victim objects suitable for exploitation, we examine

whether a memory region in the arrayAp [n] is included within one

of the memory regions indicated by the arrayAr [m]. We select data

objects and the corresponding system calls from the database for

memory layout manipulation based on the following two criteria.

First, the object of our selection must be capable of being allocated

at the cache same as the vulnerable object. Second, we must be able

to identify an overlap successfully (see the example in Figure 3a).

Use After Free. Given a UAF vulnerability, there are also two

typical approaches to performing slab manipulation. One approach

is to leverage the power of that vulnerability to modify metadata

and then allocate an arbitrary victim object to the target address

specified by that tampered metadata. The other approach is to

overlay a spray object on top of a vulnerable object, overwrite

that pointer and dereference that pointer for exploitation. For the

first approach, the selection criterion of data objects is to simply

have the selected victim data object share the same cache as the

vulnerable object. For the second approach, the selection of data

objects could be viewed as the identification of the spray objects.

The criteria of spray object selection are to ❶ guarantee the spray

object could be allocated in the same cache as the vulnerable object

and ❷ ensure at least one field in the array Ap [n] overlaps one of

the memory regions indicated by the array Ar [m] (see the example

in Figure 3b).

Double Free. For vulnerabilities in double free, similar to the afore-

mentioned two vulnerability types, there are also two approaches to

manipulate slab. One is to overlay a victim and then a spray object

on top of the vulnerable object with the expectation of overwriting

a pointer residing in that victim object. The other is to overlay

a spray object on the vulnerable object with the expectation of

overwriting the metadata of that vulnerable object. With respect to

the first approach, the selection of data objects is to find a victim

object and then pair it with a spray object. Similar to the UAF, this

must follow two criteria. First, victim, spray and vulnerable objects

all have to share the same cache. Second, after we align all three

objects, the spray object must cover at least one memory region

indicated by an element of the array Ap [n]. Regarding the second

approach, the selection task can be viewed as the identification of

spray object, which has to follow the criteria ś ❶ both vulnerable

and spray objects share the same cache and ❷ the metadata field

of the vulnerable object must overlap the spray object.

vul/spray obj

.

Ar[i] . l

Ar[i] . h

(l , h) (l , h) . . . (l , h) (l , h). . .

1 2 i m

Ar

(a) Vulnerability capability

(, h) (, h) . . . (, h) (, h). . .

1 2 i m

A

.

vtm obj

w w w w
Ap[i]

1 2 i n

Ap p p p p.

i + 1

− 1+ 1 j

− 1

(b) Kernel object property

Figure 2: Modeling vulnerability & object.

vul obj

vtm obj

Ar[1] . l Ar[1] . h

overflow region

w

overlap region
Ap[1] Ap[2]

adjacent slot

(a) Pairing OOB write

Ar[1] . l Ar[1] . h

Ap[2]

spray obj

overflow region

vtm obj

w

overlap region
Ap[1]

i + 1

− 1+ 1 j

− 1

(b) Pairing UAF/double free

Figure 3: Pairing vulnerability with objects.

4.2 Adjusting Slab Layout

Using the aforementioned approach and other information in our

database, we can easily pinpoint the objects needed for slab layout

manipulation and quickly figure out what system calls we should

use to interact with the objects identified. However, as is illustrated

in Section 2.3, when leveraging a system call to tamper with slab

layout, it may involve side effects - allocate or deallocate many other

data objects. This significantly influences an attacker’s capability

in obtaining the desired slab layout. As a result, we further develop

a technical approach to systematically adjust the slab layout and

eliminate the side effects introduced by those system calls.

Adjusting unoccupied slots. As is mentioned above, no matter

which exploitation approaches one would adopt against a kernel

vulnerability, he always has to allocate a target object to a cor-

responding freed slot (e.g., overlaying a spray object on top of a

vulnerable object on a free list). In practice, it is very uncommon

that an identified system call can perfectly place the target object

to the target slot. In order to address this issue, we, therefore, ad-

just the free list chain by following the procedure below. First, we

number all the unoccupied slots on the free list chain consecutively.

Then, we identify the index of the target slot i (e.g., the slot where

an accidentally freed object is located). By invoking the correspond-

ing system calls to allocate a target object (e.g., a spray object), we

record the index of the slot j where that target object is actually

allocated. We compare the two indexes. If the index i is less than

the index j (i < j), then we allocate (j − i) objects to take over more

unoccupied slots right before invoking the corresponding system

calls to allocate the target object. Otherwise, we first allocate (i − j)

objects right before triggering the vulnerability. Second, we trigger

the vulnerability and then free the objects we allocated. Finally,

we invoke system calls to allocate the target object. With such a

design, we can adjust the free list chain to a particular state, under

which the invocation of that identified system call could perfectly

position the target object to the target slot.

In this work, we accomplish the aforementioned free list chain ad-

justment by using system calls and corresponding objects archived

in our database. More specifically, when allocating a certain num-

ber of objects, we first search our database and track down those

objects that can be placed in the manipulated slab. Among the ob-

jects identified, we then choose only the objects that match the

following criteria ś ❶ the system calls tied to the objects do not

i − 11 i i + 1

j − 1j + 1 jK

Before reorganization

vtm obj

irrelevant obj

at target slotvul obj

1

K

i i + 1

j − 1j + 1 j

After reorganization

irrelevant obj

vtm obj at

target slotvul obj

i − 1

Figure 4: Reorganizing occupied slots.

introduce side effects, and ❷ the database archives the system calls

to deallocate the object without side effects.

It should be noted that we perform defragmentation [31, 48]

right before the runtime environment preparation for a kernel vul-

nerability (e.g., establishing a network connection, opening files

and mapping anonymous pages, etc). In addition, after defragmen-

tation, we trigger the corresponding vulnerability and launch our

slab manipulation immediately. With the first setup, we can force

SLAB/SLUB allocator to create a new slab, reducing instability of

our slab manipulation. With the second setup, we can minimize the

influence of other kernel threads upon the slab layout.

Reorganizing occupied slots. In most cases, by following the

procedure above, an adversary could place his target objects to the

target slots and thus obtain the slab layout of his desire for further

exploitation. However, for some vulnerabilities with an OOB write

capability, knowing the way to take over the unoccupied slots is

oftentimes not sufficient.

After defragmentation, the free list chain is sequentially orga-

nized or, in other words, the ordering of unoccupied slots perfectly

matches their physical positions. As is depicted in Figure 4, after

calling a system call to allocate a vulnerable object, the vulnerable

object takes the (i −1)th slot on the free list chain. By analyzing the

capability of the vulnerability, assume we discover the vulnerability

gives the attacker the ability to perform an out-of-bounds write,

which overwrites the data in its adjacent slot (i.e., the ith slot). Then,

following the exploitation approach mentioned in Section 2.2.2, we

should allocate a victim object to the ith slot. However, as is shown

in Figure 4, when allocating the vulnerable object through a corre-

sponding system call, we inevitably allocate an irrelevant kernel

object, which takes the slot of our target. Assuming the irrelevant

kernel object does not expose any critical data under the capability

of that vulnerability, it then becomes challenging for us to exploit

that vulnerability.

In order to tackle the challenge above, one instinctive reaction

is to free that irrelevant object from the target slot by using a

system call. However, such a method typically does not work simply

because the free of the irrelevant objects may always incur the

deallocation of the vulnerable objects. As a result, we develop the

following method to reorganize free list chain and thus adjust

occupied slots.

Before performing the reorganization, we first profile an unde-

sired layout as follows. First, we manually extend a PoC program

with the ability to call corresponding system calls to allocate a

victim object right after it invokes system calls to allocate the vul-

nerable object. Then, we instrument this modified PoC program

with ftrace [36] so that we can keep track of the data objects that

each system call (de)allocates. By running this instrumented PoC

program, we record the total number of objects that the PoC allo-

cates on the slab, and store the index for the victim object as well

as that for its desired slot. As is depicted in Figure 4, we assume

a PoC program allocates K kernel objects on the slab, the victim

object is located at the jth slot, and the desired slot for this victim

object is located at ith place.

With the profiling information mentioned above, we re-order

the free list chain prior to the allocation of the vulnerable object

by following the procedure below. Using the system calls and data

objects archived in the database, we first perform defragmentation

and then allocate objects to take over K unoccupied slots on the

free list chain. Second, we deallocate these objects in the reverse

order except for swapping the order for the ith and jth objects. As

is shown in Figure 4, following these allocation and deallocation

operations, we reshape the free list chain. When following the

same procedure above to allocate the vulnerable object and then the

victim object, we can expect all the objects are successfully allocated

at the originally slots except for the victim and that irrelevant

objects swapped.

5 IMPLEMENTATION

We implemented the aforementioned technique and named it after

SLAKE. As is mentioned above, our proposed technique involves

both static and dynamic analysis. Therefore, SLAKE contains two

major components taking responsibility for static and dynamic

analysis, respectively. In the following, we describe critical imple-

mentation details. Due to the space limit, the readers could refer

to the Appendix for more details about the database constructed

by using SLAKE. In addition, the Appendix illustrates how SLAKE

utilizes the database to assemble an exploitation template.

Static analysis. To perform static analysis, we compiled entire

kernel code by using gllvm [18]. This gives us the ability to obtain

the LLVM IR for entire Linux kernel. In this work, we developed

two LLVM passes and thus performed the aforementioned static

analysis against the Linux kernel IR. Our first LLVM pass is built for

identifying the objects and the sites of the interest. Its implemen-

tation tracks down victim objects by using the type information

preserved in LLVM IR, and gathers spray objects by searching

CallInst to kernel I/O functions such as copy_from_user(). Following

the design discussed in Section 3.1, for each identified object, this

LLVM pass also pinpoints its (de)allocation sites as well as the name

of cache holding that object. If an object contains a pointer, this

pass further identifies its dereference chain.

Our second LLVM pass is the extension of an existing tool

KINT [43], which takes the responsibility of kernel call graph con-

struction. At the high level, KINT constructs a call graph by us-

ing static field-sensitive inter-procedural taint analysis. Through

this static analysis, it could estimate the destinations for indirect

calls and thus build a kernel call graph. In our implementation, we

utilized KINT as our building block and customized it from two

perspectives. First, we trim off nodes and corresponding edges in

the call graph that pertain to functions in .init.text section. This is

because these functions are no longer invoked after kernel booting

and cannot be used to facilitate kernel exploitation. Second, we

eliminate the edges that bridge two independent kernel modules

because independent kernel modules do not have relationships be-

tween each other and the bridging edges in a call graph are false

positives. In our implementation, we employ the KConfig file to

identify such edges. To be specific, we implemented a python script

that deems two modules dependent between each other only if it

identified that pair of modules in the dependency attributes depends

֒→ on and select. In total, the two LLVM passes contain about 2,000

lines of C++ code, capable of running on LLVM 6.0 [34].

Dynamic analysis. As is mentioned in Section 3.2, considering

the need to tie deallocation and dereference system calls to the

object we intentionally allocate on the slab, we cannot directly

rely upon fuzz testing. Therefore, we do not use the plugin like

KCOV [49] to facilitate the identification of system calls because it

provides no information regarding kernel objects. Instead, we wrote

a GCC plugin responsible for implanting panic anchors into the

Linux kernel. In addition, it instruments the Linux kernel, making

it obtain the ability to store the address of each allocated object.

As is described in Section 3.2, with all of these, we can utilize fuzz

testing to explore the paths to these sites and thus facilitate the

identification of system calls pertaining to object (de)allocation as

well as function pointer dereference. In this work, we extended a

Linux kernel fuzzing tool ś Syzkaller [13] with the integration of

Moonshine[29] ś to perform fuzz testing against the instrumented

Linux kernel. To be specific, in addition to the fuzzing templates

provided by this tool, we introduced more fuzzing templates to

Syzkaller. In total, the implementation of our Syzkaller extension

along with the GCC plugin contains about 700 lines of C code.

As is described in Section 3.1, the dereference anchor sites do

not always represent the sites of function pointer dereference. In

order to truly pinpoint a function pointer dereference and ensure

the dereference of that pointer is through a victim object, we also

developed a GDB python script. Technically speaking, the GDB

python script runs a Linux kernel on QEMU and sets breakpoints

on the dereference anchors. Each time the script hits a breakpoint,

it performs single-step execution and records each of the state-

ments until the end of the current function. Since the statements

recorded indicate the execution trace from the anchor site to the

end of the current function, the python script further constructs a

use-def chain, against which it performs backward data flow anal-

ysis, checks each function pointer dereference on the chain, and

thus determine whether that function dereference is truly through

the corresponding victim object. As part of SLAKE, last but not least,

we implemented a ftrace util that instruments the programs gener-

ated by syzkaller. With the facilitation of this util, SLAKE logs slab

activities tied to each system call and thus profiles the side effects

incurred by system calls. In our implementation, the GDB script

and ftrace util contain 200 lines of python code and approximately

400 lines of C code, respectively. We plan to publicly release the

entire code space of SLAKE at the time of the acceptance of this

work.

6 EXPERIMENT

In this section, we first introduce the setup of our experiment. Then,

we evaluate how well SLAKE could identify the system calls pertain-

ing to object (de)allocation and function pointer dereference. Finally,

we showcase the effectiveness of SLAKE in exploit development.

6.1 Experiment Setup

To evaluate the effectiveness of SLAKE, we ran our experiment on

Linux kernel v4.15, the latest long-term version at the time of the

experiment. Against this version of Linux, we performed static anal-

ysis to build up an object database for core kernel (code covered

in defnoconfig) as well as 32 commonly-adopted kernel modules

pertaining to the file system, network, time management, inter-

process communication, device drivers and security mechanisms.

When compiling the Linux kernel image for dynamically exploring

sites of interest in these modules, we additionally enabled other

modules marked in defconfig plus KCOV so that kernel fuzzing

can be booted normally. For each site of our interest, we set our

kernel fuzzing for two hours. Throughout the entire experiment,

we used 3 VM instances on a machine with the following config-

uration ś Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHZ CPU and

64GB memory.

To obtain test cases for our evaluation, we reviewed previous re-

search works [20, 45, 46, 48] pertaining to Linux kernel exploitation.

Since the real-world vulnerabilities used in these works indicate a

corpus of representative test cases, we took all of their slab-related

vulnerabilities3 to form a dataset for our evaluation. In addition,

we exhaustively searched the CVE list [8] and complemented our

dataset by selecting those slab-related vulnerabilities that satisfy

the following criteria. ❶ There must be publicly available PoC pro-

grams demonstrating their capability in corrupting memory on the

slab because SLAKE takes as input a PoC program. ❷ There must be

an effective, lightweight approach to migrating these vulnerabilities

into v4.15 kernel (i.e., defconfig plus vulnerable modules). ❸ The

trigger of these vulnerabilities does not rely upon special hardware

devices because this allows us to avoid the intensive labor and high

cost for gathering various special hardware devices.

In total, we gathered 27 kernel vulnerabilities enclosed in our

dataset. We argue this dataset is representative not only because

they cover all the slab-related test cases used in the similar research

but also they include other real-world vulnerabilities. To the best

of our knowledge, this is the largest corpus of test cases used for

evaluating research pertaining to Linux kernel exploitation. We

release our code and exploits at [1] to foster future work.

3By slab-related vulnerabilities, we mean the vulnerabilities that corrupt slab/slub
memory regions. Our SLAKE is developed for this kind of kernel vulnerabilities and
therefore our test case corpus naturally excludes those non-slab-related vulnerabilities
like stack or integer overflow etc.

6.2 Evaluation of Syscall Identification

Comparison between different call graphs. As is described

in the section above, we build a kernel call graph by extending

KINT [43], and then utilize static and dynamic analysis to identify

system calls useful for exploitation. Technically speaking, in addi-

tion to our KINT-based approach, another approach to building a

kernel call graph is to leverage the prototype matching used in [50].

In Table 1, we show comparison results.

First, from the column indicated by ł# of v/sž, we can observe

that, in comparison with prototype-matching approach, our KINT-

based approach could reduce the total number of kernel objects that

can be potentially used for exploitation (128 vs 108). By manually

examining those 20 kernel objects eliminated, we discover they

are not the false positives but the kernel objects that are truly

unreachable from any of the system calls. This indicates KINT-

based call graph is more suitable for identifying kernel objects

potentially useful for exploitation.

Second, from the column of łavg. syscall #ž, we can observe

that our KINT-based call graph provides us with an extra benefit.

That is to reduce the average number of candidate system calls

reachable to the sites of our interest (257 vs 68). With this benefit,

we do not need to test all 257 system calls4 against each of the

individual kernel modules when performing fuzz testing. As is

specified in the column of łavg. timež, this significantly reduces the

time spent on dynamically finding target system calls for object

(de)allocation and function pointer dereference (34 min vs 2 min).

With this, we can pinpoint system calls tied to object (de)allocation

and function pointer dereference in a more efficient fashion. It

should be noted that, when using the prototype-matching call graph

to guide fuzzing, we observe that SLAKE identifies less number of

system calls. This does not imply that prototype-matching call

graph cannot lead to the success of system call identification but

simply means that SLAKE cannot track down corresponding system

calls in less than 2 hours. Similarly, it should also be noted that

SLAKE cannot find the paths to all the sites of our interest not

because those sites cannot be reachable through system calls but

because SLAKE needs much longer time to dynamically pinpoint

those sites.

Comparison across kernel modules. From Table 1, we can also

observe that, for some kernelmodules (e.g., BLOCK and ISO9660_FS),

SLAKE fails to identify any kernel objects useful for exploitation.

This does not mean the failure of SLAKE. Rather, it is because these

kernel modules are relatively small in code space (5,463 LOC on

average), containing less structural variables among which none of

them could potentially serve as victim or spray objects. In addition,

we discover that SLAKE tracks down less number of candidate spray

objects than that of candidate victim objects (104 vs 4). Among all 32

kernel modules plus the core kernel, there are only 3 modules truly

contributing spray objects for kernel exploitation. To understand

the shortage of spray objects, we manually examine the kernel code

and explore the reason behind this observation. We discover this is

because Linux kernel developers typically store data from userland

on the stack and barely migrate them to the slab. While the shortage

of spray objects might influence the way to perform heap spray and

4Linux kernel has 314 system calls. The 257 system calls are those tied to the kernel
image we built.

Modules
Prototype-matching call graph KINT-based call graph

Static Analysis Dynamic Analysis Static Analysis Dynamic Analysis
of v/s avg. syscall # # of alloc/free/deref avg. time (min) # of v/s avg. syscall # # of alloc/free/deref avg. time (min)

Essential Part 39/0 257 15/3/5 46 23/0 40 16/5/6 3
AIO 3/0 257 1/0/0 23 3/0 2 2/1/2 2

ASSOCIATIVE_ARRAY 1/0 257 1/1/1 5 1/0 1 1/1/1 2
BLOCK 0/0 - - - 0/0 - - -

CGROUPS 1/0 257 1/1/1 11 1/0 1 1/1/1 2
EPOLL 3/0 257 0/0/0 - 3/0 3 1/0/0 1
EXT4_FS 8/0 257 1/0/0 5 8/0 140 3/0/0 3

FILE_LOCKING 1/0 257 0/0/0 - 1/0 4 1/0/0 2
FS_POSIX_ACL 1/0 257 1/1/1 18 1/0 19 1/1/1 2

FSNOTIFY 1/0 257 1/0/0 73 1/0 1 1/1/1 1
INET 13/1 257 0/0/0 - 13/1 3 8/2/3 5

IP_MROUTE 1/0 257 1/0/0 34 1/0 1 1/0/0 1
IPV6 6/0 257 0/0/0 - 6/0 6 1/0/0 2

ISO9660_FS 0/0 - - - 0/0 - - -
FAT_FS 0/0 - - - 0/0 - - -
JBD2 2/0 257 1/0/0 23 2/0 72 2/0/0 3
KEYS 5/2 257 3/0/1 33 5/2 1 7/0/3 4
NET 13/0 257 4/1/0 28 12/0 119 6/1/1 4

NETLABEL 1/0 257 1/0/0 41 1/0 43 1/0/0 2
PID_NS 1/0 257 1/0/0 14 1/0 1 1/1/1 1

POSIX_TIMERS 1/0 257 1/0/0 64 1/0 1 1/0/1 1
PROC_FS 3/0 257 1/0/0 16 2/0 58 3/0/0 3
SECCOMP 1/0 257 1/0/0 39 1/0 1 1/0/0 1

SECURITY_SELINUX 2/0 257 2/0/0 48 2/0 17 2/1/2 2
SND_HRTIMER 1/0 257 1/0/0 56 1/0 72 1/0/0 2

SND_SEQUENCER 3/0 257 1/0/0 23 3/0 93 3/1/1 1
SND_TIMER 2/0 257 2/0/0 50 2/0 71 2/0/0 1
SYSVIPC 2/1 257 0/0/0 - 2/1 28 3/0/0 4
TIMERFD 1/0 257 1/1/1 6 1/0 95 1/1/1 2

TTY 4/0 257 3/1/1 26 3/0 73 3/3/3 1
USB_MON 3/0 257 1/0/0 31 2/0 72 1/0/0 3
UTS_NS 1/0 257 0/0/0 - 1/0 1 1/0/0 2
Total 124/4 257 46/9/11 34 104/4 68 75/20/29 2

Table 1: The performance of SLAKE under the guidance of prototype-matching call graph and KINT-based call graph. # of v/s

denotes the number of victim and spray objects identified by using static analysis; avg. syscall # represents the average number

of syscalls, through reachability analysis, which can potentially reach to a site of our interest; # of alloc/free/deref indicates

the number of syscalls through which one can truly allocate an object, free an object or dereference a function pointer; avg.

time stands for the average amount of time that our dynamic analysis spends on finding each syscall.

Public
victim: file, subprocess_info, ccid, seq_file,
tty_struct, ip_mc_socklist, key, sock

spray: load_msg, SyS_add_key()

Additional

victim: seq_operations, perf_event_context, linux_binprm,
vmap_area, kioctx_table, kioctx, assoc_array_edit,
cgroup_namespace, ext4_allocation_context, ip_options_rcu,
ip_mc_list, ip_sf_socklist, request_key_auth, pid_namespace,
k_itimer, avc_node, sk_security_struct, snd_seq_timer,
timerfd_ctx, tty_ldisc, tty_file_private

spray: ip_options_get_from_user(), keyctl_update_key()

Table 2: The types of kernel objects identified by SLAKE. Note

taht the łvictimž indicates those types of objects that SLAKE

not only successfully pinpoints syscall(s) to allocate but also

identifies syscall(s) to dereference the pointer enclosed. The

łpublicž indicates that these objects are also used in pub-

lic exploits; the ładditionalž indicates the objects that have

never been used in public exploits.

thus the exploitation of UAF and double free vulnerabilities, as we

will show below, this does not restrict us from diversifying working

exploits for real-world UAF and Double Free vulnerabilities.

Comparison between SLAKE andmanual efforts. To examine

how effective SLAKE is in terms of identifying kernel objects for ex-

ploitation, ideally, we would like to manually examine each system

call and the objects they can (de)allocate and dereference. However,

this is not possible even for a single system call. In the Linux kernel,

in addition to kernel threads, software and hardware interrupts

could occur at any time. They all can change the execution state of

kernel and thus influence the kernel object that a system call could

operate. To truly identify the set of objects pertaining to a system

call manually, one must consider software/hardware interrupts and

kernel threads at millions of sites over super complicated contexts.

To the best of our knowledge, there has not yet been previous re-

search or engineering efforts demonstrating the success of such

manual analysis. Therefore, instead of doing manual analysis to

figure out a ground-truth object set and then compare it with the

results that SLAKE identifies, we utilize a different method below.

For the 27 test cases used in our experiment, we extensively

searched their exploits publicly available. Then, we identified all

the objects that have been used in these exploits and appeared in

our examined kernel modules (32 kernel modules + 1 core kernel).

Since these objects are summarized by security researchers, we

treat them as the objects identified by manual efforts. In this work,

we compared these objects with the ones that SLAKE identifies. In

Table 2, we show the comparison results. As we can observe, SLAKE

successfully identifies not only all the 10 objects from the public

CVE-ID Type
Exploitation Methods

I II III IV

N/A[47] OOB 5 (1⋆) - - 5 (0)
2010-2959 OOB 13 (1⋆) - - 13 (0)
2018-6555 UAF - 1(1⋆) - -

2017-1000112 OOB 0 (1) - - -
2017-2636 double free - 0 (1) - -
2014-2851 UAF - 0 (1) - -
2015-3636 UAF - 3 (1) - 2 (0)
2016-0728 UAF - 3 (1) - 4 (0)
2016-10150 UAF - 3 (1) - -
2016-4557 UAF - 2 (0) - -
2016-6187 OOB - - - 6 (1)
2016-8655 UAF - 3 (1) - -
2017-10661 UAF - 3 (1) - -
2017-15649 UAF - 3 (1) - -
2017-17052 UAF - 0 (0) - -
2017-17053 double free - - - 2 (1)
2017-6074 double free - 3 (1) 12 (0) -
2017-7184 OOB 10 (0) - - 10 (0)
2017-7308 OOB 14 (1) - - 14 (0)
2017-8824 UAF - 3 (1) - -
2017-8890 double free - 4 (1) 4 (0) -
2018-10840 OOB 0 (0) - - -
2018-12714 OOB 0 (0) - - -
2018-16880 OOB 0 (0) - - -
2018-17182 UAF - 0 (0) - -
2018-18559 UAF - 3(0) - -
2018-5703 OOB 0 (0) - - -

Table 3: Exploitability demonstration and comparison. The

numbers within the parentheses indicate the total amount

of exploits publicly available and those out of the paren-

theses represent the amount of exploits generated through

SLAKE. The star ⋆ denotes the objects used in the public ex-

ploit are not enclosed in the exploits developed through

SLAKE. I∼ IV indicate the aforementioned exploitationmeth-

ods pertaining to OOB, UAF, Double Free and metadata ma-

nipulation, respectively.

exploits, but also pinpoints 22 additional objects that have not yet

been seen to be used for exploitation. To some extent, this implies

the effectiveness of the kernel fuzzing as well as the effectiveness of

SLAKE in terms of helping security researchers track down useful

kernel objects.

6.3 Evaluation of Exploit Development

Comparison between public and SLAKE-generated exploits.

Table 3 shows the number of unique working exploits5 for each of

the kernel vulnerabilities in our dataset.

First, we can observe that, for all 18 vulnerabilities already having

public exploits, SLAKE could always find the data objects and the

corresponding system calls used in that exploit except for the cases

in the first 6 rows. Among all these 18 cases, there are 14 kernel

vulnerabilities, against which SLAKE could also generate alternative

working exploits using other distinct data objects. As we can further

observe, on average, SLAKE could help security researchers develop

8 additional unique exploits. This implies SLAKE could provide a

security researcher with the ability to diversify the way to perform

kernel exploitation.

5As we mentioned in Section 2.1, we demonstrate exploitability through the control
over the program counter. By working exploits, we, therefore, mean the exploits
through which one could obtain control over the program counter. By distinct exploits,
we mean those developed by using different victim or spray or both objects.

In addition, we can observe that, for those vulnerabilities that

have not yet demonstrated exploitability through a public exploit,

SLAKE could still assist security researchers in finding suitable

objects to perform exploitation (e.g., CVE-2016-4557 and CVE-

2017-7184 and CVE-2018-18559). While we cannot conclude un-

exploitability through the lack of a public exploit demonstrating

control flow hijacking, this observation ś to some extent ś implies

that SLAKE could potentially escalate the exploitability for a target

kernel vulnerability.

Some discussion of failure cases. In Table 2, we can also observe,

out of 27 test cases in our dataset, there are 9 vulnerabilities that

SLAKE cannot facilitate the development of their exploits.

As of the vulnerabilities pertaining to CVE-2017-1000112 and

CVE-2018-5703, their PoC programs demonstrate only the capabil-

ity in overwriting data inside the slab/slot pertaining to vulnerable

objects. Under this capability, the exploitation of these vulnerabili-

ties cannot use slab layout manipulation but the overwrite of critical

data within the vulnerable objects. Therefore, the exploitation fa-

cilitation approaches tied to SLAKE cannot be applied to such cases.

This does not dilute the value of SLAKE. This is in part because

the exploitability of such vulnerabilities can be easily determined ś

requiring much expertise and manual efforts ś but largely because

among all the vulnerabilities identified over the past years there are

fewer vulnerabilities that provide attackers with such a capability.

Regarding the vulnerabilities pertaining to CVE-2017-2636, CVE-

2014-2851, and CVE-2018-17182, we found that, in order to perform

an exploitation, we must allocate target objects to a special cache.

From our database, we do not find objects suitable for such caches.

Taking CVE-2014-2851 for example, we discover the vulnerable

object (group_info) of this vulnerability is in a relatively small size

(8 bytes). In our database, we fail to find a spray object that can

be allocated on the cache same as that of the vulnerable object.

In this work, we do not blame our proposed techniques for these

cases because our experiment setup includes only those common

kernel modules. In the real-world kernel images, many other ker-

nel modules are included. They might carry the objects useful for

exploitation.

With respect to vulnerabilities corresponding to CVE-2018-12714,

CVE-2018-16880, CVE-2017-17052, and CVE-2018-10840, their PoC

programs do not demonstrate a sufficient capability to write con-

trollable data to a memory region. Taking CVE-2018-12714 and

CVE-2018-16880 for example, we discover that, by following the

control demonstrated through their PoC programs, an attacker

does not have the freedom to control the value he writes to the

target memory regions. This indicates, the exploitability of these

vulnerabilities is heavily dependent upon the capability of these

vulnerabilities. As we will discuss in Section 7, we will explore

technical approaches to tackle this issue in the future.

7 DISCUSSION & FUTURE WORK

In this section, we discuss some related issues and future work.

Other OSes. To facilitate kernel exploitation, SLAKE utilizes an au-

tomated method to build a database which contains kernel objects

useful for exploitation. In this work, we demonstrate this approach

on Linux kernel. However, this automated approach can also be

applied to facilitate exploitation for other open-source OSes (e.g.,

FreeBSD[11] and Android [33]). For those closed-source OSes like

Windows, when utilizing our proposed approach for object identi-

fication and database construction, one has to devote energies to

binary code reverse engineering.

Other allocators. In addition to a database carrying objects for ex-

ploitation, SLAKE introduces a systematic approach for slab layout

manipulation. To extend this approach to other kernel allocators

(e.g., SLOB allocator [25], buddy system [5]) or those used in user-

land (e.g., ptmalloc[12]), a modification is required. Take ptmalloc

for example. Different from kernel memory management, ptmalloc

might coalesce two freed chunks (like the slot in SLAB/SLUB allo-

cator) into a single one before adding them to bins (like the cache

in SLAB/SLUB allocator) for recycle. In order to customize our ma-

nipulation approach for this allocator, memory manipulation has

to consider the binning and coalescing mechanism of ptmalloc. As

part of our future work, we will therefore explore how to augment

our memory manipulation approach for these different allocators.

Object identification. As is specified in Section 3.1, we deter-

mine a spray object by analyzing the argument of kernel functions

(e.g.,dst of the function copy_from_user(). While this design could

ensure SLAKE identifies most objects useful for heap spray, it could

possibly ignore some special situations. For example, userland data

can be copied first to the kernel stack through a system call and

then migrated to the slab through a kernel function (e.g., memcpy()).

To identify spray objects in this special situation, an accurate inter-

procedural data flow analysis is inevitable. Therefore, as another

part of our future work, we also intend to augment SLAKE with

the ability to perform inter-procedural data flow analysis and thus

handle such special situations.

Other exploitation methods. In addition to the four exploitation

methods discussed in Section 2, security researchers have developed

other approaches for exploiting some special cases (e.g., [16, 21])

as well as heap-based use-before-initialization vulnerability. While

those approaches are not as common as what we discussed in

this paper, by integrating them into SLAKE, we could enrich the

functionality of our technique. As a result, our future effort will

also include extending SLAKE for more exploitation methods.

Vulnerability capability. As is described in Section 2, we manu-

ally extract vulnerability capabilities from a PoC program under

the guidance of debugging tools. Technically speaking, this process

could be potentially automated by using dynamic analysis methods

such as symbolic tracing. Therefore, another line of our future work

will be to explore the automation of this mechanism and enrich

this functionality for SLAKE.

Recall that this work does not explore vulnerability capabilities

not manifested through a PoC program. As is shown in Section 6,

an inadequate capability could limit the exploitability of a vulnera-

bility. We argue vulnerability capability exploration is a non-trivial

problem, which might need the integration of various advanced

techniques in program analysis. Last but not least, our future effort

will therefore include exploring technical approaches to enriching

capabilities for a vulnerability.

8 RELATEDWORK

The works most relevant to ours include those pertaining to kernel

exploitation as well as those automating the generation of exploits.

In the following, we describe the existing works in these two kinds

and discuss their difference from ours.

Kernel exploitation techniques. To facilitate heap spray in the

process of kernel Use-After-Free exploitation, Xu et al. proposed

two memory collision attack mechanisms [48]. In one of their at-

tack mechanisms, they employed the memory recycling mechanism

residing in kernel allocator. In another mechanism, they took ad-

vantage of the overlap between the physmap and the SLAB caches.

To facilitate the exploitation of Use-Before-Initialization, Lu et al.

proposed a deterministic stack spraying approach as well as an

exhaustive memory spraying technique [24]. Both provide an at-

tacker with the ability to manipulate data in uninitialized memory

regions. To assist with the process of finding a useful exploitation

primitive (e.g., control-flow hijack or arbitrary write/read), FUZE

[46] proposed an automated technique that utilizes under-context

fuzzing along with symbolic execution to explore exploitable ma-

chine states and thus expedite the development of working exploits

for Use-After-Free vulnerabilities. To escalate the ability for vulner-

abilities to bypass kernel mitigation, a recent work [45] introduces

a general exploitation method which first converts a control-flow

hijacking primitive into a classic stack overflow and then leverages

the traditional code-reuse attack to circumvent SMEP/SMAP. In

this work, we do not focus on facilitating kernel exploitation for a

specific type of vulnerabilities nor developing general exploitation

methods to bypass kernel mitigation. Rather, our research endeavor

centers around building a technical approach to not only facilitate

exploitation for various types of kernel vulnerabilities but also di-

versify the ways to perform memory layout manipulation and thus

exploitation.

Exploit Automation techniques. There is a rich collection of

research works on exploit generation automation. For example,

using preconditioned symbolic execution and concolic execution

techniques, Brumley et al. developed an automated approach to

generate working exploits for stack overflow and format string

vulnerabilities [3, 6]. Making use of symbolic tracing along with a

combination of shellcode layout remediation and path kneading,

Bao et al. developed ShellSwap that could automatically transplant

existing shellcode and thus synthesize new shellcode for a target

vulnerability [4]. With the facilitation of forward and backward

taint analysis, Mothe et al. devised a technical approach to craft

working exploits for simple vulnerabilities in user-mode applica-

tions [26]. Utilizing various dynamic analysis methods, a team

from the UK and a team from China crafted working exploits for

those heap overflow vulnerabilities residing in the userland appli-

cations [35, 44]. Using various program analysis, the Shellphish

team at UCSB developed two systems (PovFuzzer and Rex) which

give a security analyst the ability to turn a crash to a working ex-

ploit [38, 39, 41]. Regarding PovFuzzer, it repeatedly subtly mutates

input to a vulnerable binary and observes the relationship between

a crash and the input. With respect to Rex, it symbolically executes

the input with the goal of jumping to shellcode or performing an

ROP attack. To expedite the exploitation of vulnerabilities with

the capability of out-of-bounds access, Heelan et al. utilized regres-

sion tests to obtain the knowledge of how to perform heap layout

manipulation [15]. Recently, Ispoglou et al. proposed to automate

data-only attack to bypass control-flow integrity in userland [19].

Given arbitrary memory write primitives, it chains basic blocks

based on their semantics and thus achieves the exploitation goal.

In this work, we also develop a tool for facilitating exploit gener-

ation. However, our tool is fundamentally different from the afore-

mentioned tools and techniques. First, rather than dealing with

applications in the user space, our tool targets the Linux kernel

where exploitation typically involves more complicated operations

andmore sophisticatedmemory layout. Second, rather than generat-

ing one single exploit for a target vulnerability, our tool explores all

possible kernel objects and exploitation methods to output various

working exploits. To some extent, this gives a security researcher

the ability to diversify the ways of launching kernel exploitation

and even escalate vulnerability exploitability.

9 CONCLUSION

In this paper, we built SLAKE to facilitate exploit development for

kernel vulnerabilities. Technically speaking, SLAKE uses static and

dynamic analysis techniques to track down data objects useful for

kernel exploitation. Using SLAKE against 27 real-world kernel vul-

nerabilities, we show a security researcher can effectively identify

kernel objects and the corresponding system calls to perform kernel

exploitation. In addition, with the facilitation of SLAKE, we demon-

strate a security researcher can also diversify his ways to perform

kernel exploitation. For some kernel vulnerabilities, we also find

that SLAKE can even escalate the exploitability for target vulnera-

bilities. With all of these demonstrations and findings, we conclude

that static and dynamic analysis techniques could significantly em-

power the capability of security researchers in developing working

exploits, and thus potentially benefit exploitability assessment for

Linux kernel bugs.

REFERENCES
[1] 2019. Code and Exploits for SLAKE. (2019). https://github.com/chenyueqi/

SLAKE.git.
[2] 0x3f97. 2018. cve-2017-8890 root case analysis. (2018). https://0x3f97.github.io/

exploit/2018/08/13/cve-2017-8890-root-case-analysis/.
[3] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz, Mav-

erick Woo, and David Brumley. 2014. Automatic Exploit Generation. Commun.
ACM 57 (2014).

[4] Tiffany Bao, RuoyuWang, Yan Shoshitaishvili, and David Brumley. 2017. Your Ex-
ploit isMine: Automatic Shellcode Transplant for Remote Exploits. In Proceedings
of the 38th IEEE Symposium on Security and Privacy (S&P).

[5] Daniel P. Bovet and Marco Cesati. 2010. Understanding the Linux Kernel. Else-
vier.

[6] David Brumley, Pongsin Poosankam, Dawn Xiaodong Song, and Jiang Zheng.
2008. Automatic Patch-Based Exploit Generation is Possible: Techniques and Im-
plications. In Proceedings of the 29th IEEE Symposium on Security and Privacy
(S&P).

[7] Kees Cook. 2010. CVE-2010-2963 v4l compat exploit. (2010). https://outflux.net/
blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/.

[8] The MITRE Corporation. 2019. common Vulnerability and Exposures. (2019).
https://cve.mitre.org/cve/.

[9] SSD Secure Disclosure. 2017. SSD Advisory ś Linux Kernel AF_PACKET Use-
After-Free. (2017). https://ssd-disclosure.com/archives/3484.

[10] Jake Edge. 2014. The kernel address sanitizer. (2014). https://lwn.net/Articles/
612153/.

[11] The FreeBSD Foundation. 2019. The FreeBSD Project. (2019). https://www.
freebsd.org/.

[12] Wolfram Gloger. 2006. Wolfram Gloger’s malloc homepage. (2006). http:
//www.malloc.de/en/.

[13] google. 2019. syzkaller - kernel fuzzer. (2019). https://github.com/google/
syzkaller.

[14] Samuel Grob. 2014. Linux local root exploit for CVE-2014-0038. (2014). https:
//github.com/saelo/cve-2014-0038.

[15] S Heelan, T Melham, and D Kroening. 2018. Automatic Heap Layout Manipu-
lation for Exploitation. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security).

[16] Jann Horn. 2018. A cache invalidation bug in Linux memory man-
agement. (2018). https://googleprojectzero.blogspot.com/2018/09/
a-cache-invalidation-bug-in-linux.html.

[17] Ralf Hund, Thorsten Holz, and Felix C. Freiling. 2009. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In Proceedings of the
18th USENIX Security Symposium (USENIX Security).

[18] ianamason. 2019. Whole Program LLVM: wllvm ported to go. (2019). https:
//github.com/SRI-CSL/gllvm.

[19] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18).

[20] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. 2014.
ret2dir: Rethinking Kernel Isolation. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security).

[21] Andrey Konovalov. 2017. Exploiting the Linux kernel via packet
sockets. (2017). https://googleprojectzero.blogspot.com/2017/05/
exploiting-linux-kernel-via-packet.html.

[22] Andrey Konovalov. 2017. A proof-of-concept local root exploit for CVE-2017-6074.
(2017). https://github.com/xairy/kernel-exploits/blob/master/CVE-2017-6074/
poc.c.

[23] Lexfo. 2018. CVE-2017-11176: A step-by-step Linux Kernel exploitation. (2018).
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part1.html.

[24] Kangjie Lu, M Walter, David Pfaff, and Stefan Nürnberger and Wenke Lee and
Michael Backes. 2017. Unleashing Use-Before-Initialization Vulnerabilities in the
Linux Kernel Using Targeted Stack Spraying. In Proceedings of the 2017 Network
and Distributed System Security Symposium (NDSS).

[25] Matt Mackall. 2005. slob: introduce the SLOB allocator. (2005). https://lwn.net/
Articles/157944/.

[26] Rohit Mothe and Rodrigo Rubira Branco. 2016. DPTrace: Dual Purpose Trace for
Exploitability Analysis of Program Crashes. In Black Hat USA Briefings.

[27] Vitaly Nikolenko. 2016. CVE-2014-2851 group_info UAF Exploitation. (2016).
https://cyseclabs.com/page?n=02012016.

[28] Jon Oberheide. 2010. Linux Kernel CAN SLUB Overflow. (2010). https://jon.
oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/.

[29] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security).

[30] Christopher M. Penalver. 2016. How to triage bugs. (2016). https://wiki.ubuntu.
com/Bugs/Importance.

[31] Enrico Perla and Massimiliano Oldani. 2010. A Guide to Kernel Exploitation.
Elsevier.

[32] Alexander Popov. 2017. CVE-2017-2636: exploit the race condition in the n_hdlc
Linux kernel driver bypassing SMEP. (2017). https://a13xp0p0v.github.io/2017/
03/24/CVE-2017-2636.html.

[33] Android Open Source Project. 2019. Common Android Kernel Tree. (2019).
https://android.googlesource.com/kernel/common/.

[34] LLVM Project. 2019. LLVM 6.0.0 Release Notes. (2019). http://releases.llvm.org/
6.0.0/docs/ReleaseNotes.html.

[35] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. 2017. Modular Synthesis
of Heap Exploits. In ACM SIGSAC Workshop on Programming Languages and
Analysis for Security (PLAS).

[36] Steven Rostedt. 2009. Debugging the kernel using Ftrace. (2009). https://lwn.
net/Articles/365835/.

[37] Chris Salls. 2017. Exploiting CVE-2017-5123 with full protections. SMEP,
SMAP, and the Chrome Sandbox! (2017). https://salls.github.io/
Linux-Kernel-CVE-2017-5123/.

[38] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In Proceedings of the 2015 Network and
Distributed System Security Symposium (NDSS).

[39] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK:(State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P).

[40] Richard M. Stallman. 2019. GNU Debugger. (2019). https://www.gnu.org/
software/gdb/.

[41] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the 2016 Network and Distributed System Security Symposium
(NDSS).

[42] Dmitry Vyukov. 2018. syzbot and the tale of thousand kernel bugs.
(2018). https://events.linuxfoundation.org/wp-content/uploads/2017/11/

Syzbot-and-the-Tale-of-Thousand-Kernel-Bugs-Dmitry-Vyukov-Google.pdf.
[43] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.

2012. Improving Integer Security for Systems with KINT. In Proceedings of the
10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[44] Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
BingChang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable. In Proceedings of the 25nd ACM SIGSAC Conference on
Computer and Communications Security (CCS).

[45] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitating
Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security).

[46] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Wei Zou, and Xiaorui Gong. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security).

[47] ww9210. 2019. exploit code for a bpf heap overflow vulnerability. (2019). https:
//github.com/ww9210/kernel4.20_bpf_LPE.

[48] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From Collision To Exploitation: Unleashing Use-After-
Free Vulnerabilities in Linux Kernel. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[49] Masahiro Yamada and Jani Nikula. 2019. kcov:code coverage for fuzzing.
(2019). https://github.com/torvalds/linux/blob/master/Documentation/dev-tools/
kcov.rst.

[50] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang, Xiaojing Liao, Pan Bian,
and Bin Liang. 2017. SemFuzz: Semantics-based Automatic Generation of Proof-
of-Concept Exploits. In Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS).

10 APPENDIX

A AUTOMATED APPROACH TO PAIRING
VULNERABILITY WITH OBJECT

We design an automated approach to pairing a kernel vulnerability

with objects. The algorithm 1 describes the detail of this automated

approach. As we can see in Algorithm 1, the input to the algorithm

includes the type of the vulnerability (T), the name of cache for the

vulnerable object (C), a Flag (F) indicating ś for a UAF vulnerability ś

whether it is feasible to modify the meta-header after the vulnerable

object is freed, an array Ar indicating memory regions under an

attacker’s control, and an arrayAp indicating where critical data are

located. In addition, we can observe, the output for the algorithm

is a set of 3-tuple which are a spray object, a victim object, and

the offset between the vulnerable and the victim object. Here, the

offset describes desired slab layout. Considering that attackers can

move a victim object to any slots on the slab, we further define

an operation ⊕ to adjust the base address of critical data in the

victim object. For example, when a victim object is slid two slots

rightward, we modify Ap as Ap ⊕ (2 × SZ) which adds 2 × SZ to

all pointer offets in Ap .

B DATABASE AND ITS USAGE

As is mentioned in this paper, using static and dynamic analysis, we

construct a database in which we store information useful for kernel

exploitation. In our implementation, we save these information in

a text file. Here, we specify the information stored in the database

and illustrate how to use the information to perform a slab layout

manipulation by using an example shown in Figure 5.

As we can see in the figure, fsnotify_group is a victim object

in cache kmalloc-256. Its critical data is in the offset 0x8. Its allo-

cation, free and dereference system calls are stored in the head

file fsnotify_group_fengshui.h. In this head file, fsnotify_group can be

Algorithm 1 Matching Vulnerability Capability

Input: T : Vulnerability Type; C : VulO Cache;
F : Meta Flag; Ap : Pointer Array; Ar : Range Array

Output: S : Set of 3-tuple <SprayObj, VtmObj, Offset>

1: procedure MatchVulCap(T , C , F , Ap , Ar)
2: if T == UAF then
3: S = MatchUAF(C , Ap)
4: else if T == double_free then
5: S = MatchDF(C)
6: else if T == OOB then
7: S = MatchOOB(C , Ar)

8: return S
9:
10: procedure MatchUAF(C , F , Ap)
11: S = ∅
12: for all SprO r1, VtmO r2 using C in database do
13: Ar = data range in r1
14: if IsMatch(Ar , Ap) then
15: S = S ∪ <R1 , r1, □, □>

16: if F then
17: S = S ∪ <R4 , □, r2, □>

18: return S
19:
20: procedure MatchDF(C)
21: for all SprO r1, VtmO r2 using C in database do
22: Ar = data range in r1
23: Ap = pointer in r2
24: if IsMatch(Ar , Ap) then
25: S = S ∪ <R2 , r1, r2, □>

26: A′
p = [0]

27: if IsMatch(Ar , A
′
p) then

28: S = S ∪ <R4 , r1, r2, □>

29: return S
30:
31: procedure MatchOOB(C , Ar)
32: SZ = size of slot in C
33: for all i , −10 ≤ i ≤ 10, i , 0 do
34: for all VtmO r2 using C in database do
35: Ap = pointers in r2
36: A′

p = Ap ⊕ (i × SZ) // slide VtmO

37: if IsMatch(Ar , A
′
p) then

38: S = S ∪ <R3 , □, r2, i>

39: Ap = [i × SZ]
40: if IsMatch(Ar , Ap) then
41: S = S ∪ <R4 , □, r2, i>

42: return S
43:
44: procedure IsMatch(Ar , Ap)
45: m = length of Ar
46: n = length of Ap
47: for all i, j , 1 ≤ i ≤ m, 1 ≤ j ≤ n do
48: if Ar [i].l ≤ Ap [j] < Ap [j] +w ≤ Ar [i].h then
49: return True
50: return False

allocated by system call inotify_init1 and critical data can be derefer-

enced by system call exit. Since inotify_init1 allocates an additional

object to the cache kmalloc-256 after fsnotify_group, we record the

side effect tied to the allocation as XY where X denotes fsnotify_group

and Y indicates an irrelevant object.

To manipulate slab layout by using the database above, we search

the database under the guidance of the method introduced in Sec-

tion 4.1. We can find that fsnotify_group is a perfect match because

it can be allocated to the cache kmalloc-256 and its critical data over-

lapping with the corruption region. Since we have an annotated

PoC program in hand, demonstrating the capability of the vulnera-

bility, we can include fsnotify_group_fengshui.h to the PoC and then

insert a call to function fsnotify_group_alloc() in function alloc_vtmo

֒→ () and a call to fsnotify_group_deref() in hijack() respectively.

Using ftrace results, we however can find that the target slot is

occupied by an irrelevant object. To address this issue, we therefore

can reorganize occupied slots by following the method introduced

in Section 4.2. For this case, we can complete reorganization by

inserting (de)allocation of file in a specific order to the function

manipulate() in the annotated PoC. This is because the object file

shares the same cache with fsnotify_group and its (de)allocation

involves no side effect.

1 Name: fsnotify_group

2 Role: victim object

3 Cache: kmalloc-256

4 A_p: [0x8]

5 HeadFile:

6 fsnotify_group_fengshui.h

7

8 Name: file

9 Role: victim object

10 Cache: kmalloc-256

11 A_p: [0x28]

12 HeadFile:

13 file_fengshui.h

(a) Database

1 // SideEffect: XY

2 void fsnotify_group_alloc() {

3 syscall(__NR_inotify_init1, 0x800);

4 }

5 void fsnotify_group_deref() {

6 syscall(__NR_exit);

7 }

(b) fsnotify_group_fengshui.h

1 // SideEffect: X

2 void file_alloc() {

3 fd = syscall(__NR_open, �test0�, 0x100);

4 }

5 // SideEffect: X

6 void file_dealloc() {

7 syscall(__NR_close, fd);

8 }

(c) �le_fengshui.h

1 // Vulnerability Type (T): OOB

2 // Cache Name (C): kmalloc-256

3 // Corruption Range (R): [256, 512]

4

5 // BEGIN HEAD FILE

6 ...

7 // END HEAD FILE

8

9 void context_setup() {...}

10 void defragmentation(){...}

11 void manipulate(){/*TODO*/}

12 void alloc_vulo(){...}

13 void alloc_vtmo(){/*TODO*/}

14 void trigger_oob(){...}

15 void hijack(){/*TODO*/}

16

17 int main() {

18 context_setup();

19 defragmentation();

20 manipulate();

21 alloc_vulo();

22 alloc_vtmo();

23 trigger_oob();

24 hijack();

25 }

(d) The PoC with Annotation

Figure 5: An example illustrating the database and its usage

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Problem Scope, Assumptions and Goals
	2.2 Technical Background
	2.3 Key Challenges

	3 Object & Syscall Identification
	3.1 Identifying Objects & Sites of Interest
	3.2 Finding System Calls

	4 Layout Manipulation
	4.1 Matching Vulnerability Capability
	4.2 Adjusting Slab Layout

	5 Implementation
	6 Experiment
	6.1 Experiment Setup
	6.2 Evaluation of Syscall Identification
	6.3 Evaluation of Exploit Development

	7 Discussion & Future Work
	8 Related Work
	9 Conclusion
	References
	10 Appendix
	A Automated Approach to Pairing Vulnerability with Object
	B Database and Its Usage

