
SLAKE: Facilitating Slab Manipulation for Exploiting
Vulnerabilities in the Linux Kernel

Yueqi (Lewis) Chen, Xinyu Xing

The Pennsylvania State University

ACM CCS 2019
Nov 14th

1

Linux Kernel is Security-critical But Buggy

“Civilization runs on Linux”[1][2]

- Android (2e9 users)
- cloud servers, desktops
- cars, transportation
- power generation
- nuclear submarines, etc.

Linux kernel is buggy
- 631 CVEs in two years (2017, 2018)
- 4100+ official bug fixes in 2017

2[1] SLTS project, https://lwn.net/Articles/749530/
[2] “Syzbot and the Tale of Thousand Kernel Bugs” - Dmitry Vyukov, Google

https://lwn.net/Articles/749530/

Harsh Reality: Cannot Patch All Bugs Immediately

Google Syzbot[3] , on Nov 14th
- 487 not fixed, 106 fix pending, 51 in moderation
- # of bug reports increases 200 bugs/month

3[3] syzbot https://syzkaller.appspot.com/upstream

Practical solution to minimize the damage: prioritize

patching of security bugs based on exploitability

https://syzkaller.appspot.com/upstream

Workflow of Determining Exploitability

4

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to
tamper “fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab (kernel heap)
Step 1

Step 2

Step 3

Example: Exploit A Slab Out-of-bound Write in Three Steps

Challenges of Developing Exploits

5

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Challenges of Developing Exploits

6

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr
2. How to (de)allocate and

dereference useful objects
- System call sequence, arguments

Challenges of Developing Exploits

7

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

2. How to (de)allocate and
dereference useful objects

- System call sequence, arguments
3. How to manipulate slab to

reach desired layout
- unexpected (de)allocation along

with vulnerable/victim object
makes side-effect to slab layout

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

Roadmap

Part I: Build A Kernel Object Database

- Include the kernel objects useful for exploitation and system calls and
arguments that (de)allocate and dereference them (Challenge 1&2)

Part II: Adjust Slab Layout Systematically

- Deal with unoccupied/occupied situations respectively (Challenge 3)

8

A Straightforward Solution to Challenges 1&2

9

Run kernel regression test

Monitor (de)allocation,
dereference of objects in
kernel

Correlate the object’s
operations to the system calls Monitor

Allocation
Deallocation
Dereference

Kernel

Syscall

Regression
test

Correlation

This solution can’t be directly applied to kernel.

Problems With the Straightforward Solution

10

Huge codebase
- # of objects is large while not all of them are useful

e.g., in a running kernel, 109, 000 objects and 846, 000 pointers[4]

- Over 300 system calls with various combinations of arguments
- Complex runtime context and dependency between system calls

Asynchronous mechanism
- e.g, Read-Copy-Update (RCU) callback, dereference is registered

first and triggered after a grace period

Multitask system
- Noise: other user-space processes, kernel threads, and hardware

interrupts can also (de)allocate and dereference objects

[4] Back to the Whiteboard: a Principled Approach for the Assessment and Design of Memory Forensic Techniques, USENIX Security ’19

 Overview - Our Solution to Challenge 1&2

11

● Static Analysis to identify
useful objects, sites of
interest (allocation,
deallocation, dereference),
potential system calls

● Fuzzing Kernel to confirm
system calls and complete
arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Kernel Call Graph

Static Analysis - Useful Objects and Sites of Interest

12

struct file_operations {
...
int (*llseek)(struct file*, loff_t, int);
...

}

struct file {
…
const struct file_operations *f_op;
...

}

file->f_op->llseek(...);

kfree_rcu(...);

Victim Object
- enclose a function pointer or a

data object pointer
- once written, the adversaries can

hijack control flow

Dereference Site
- indirect call
- asynchronous callback

Static Analysis - Useful Objects and Sites of Interest

13

SYSCALL_DEFINE5(add_key, …, const void __user*,
_payload, ...)

{
…
void* payload = kmalloc(plen, GFP_KERNEL);
copy_from_user(payload, _payload, plen);
...

}

Spray Object
- most content can be controlled
- copy_from_user() migrates data

from user space to kernel space

Static Analysis - Potential System Calls

14

__ip_mc_join_group

ip_mc_join_group_ssmip_mc_join_group

enable_mcast

other kernel functions

SyS_setsockopt SyS_writeSyS_brk ...

Reachable analysis over a customized
type-matching kernel call graph
- delete function nodes in .init.text

section
- delete call edges between

independent modules according to
KConfig

- add asynchronous callbacks to
the graph Allocation Site

Kernel Call Graph

Kernel Fuzzing - Eliminate Noise

15

Kernel

Hardware

... compiz

rcu_sched kthreadd

net_rx_softirq

sock1,
sock2

Instrument checking at sites of
interest to eliminate following noises:

Source 1:
Objects of the same type from fuzzing
executor sock2

Source 2:
1. Other processes’ syscalls
2. Kernel threads
3. Hardware interrupt

rcu_sched kthreadd
net_rx_softirq

read, write

read,
write

fuzzing
exec

Evaluation

16

Static Analysis Kernel Fuzzing

Victim/Spray Object Victim Object
(alloc/dealloc/deref)

Spray
Object

Avg. time
(min)

Total 124/4 75/20/29 4 2

of identified objects/syscalls (v4.15, defnoconfig + 32 other modules)

Roadmap

Part I: Build A Kernel Object Database

- Include the kernel objects useful for exploitation and system calls and
arguments that (de)allocate and dereference them (Challenge 1&2)

Part II: Adjust Slab Layout Systematically

- Deal with unoccupied/occupied situations respectively (Challenge 3)

17

18

Free SlotFree Slot Free Slot

Working Fashion of SLAB/SLUB allocator

freelist

Allocation
retrieve from the freelist head Free SlotObj Free Slot

freelist

Free SlotFree Slot Free Slot

freelistDeallocation
recycle to the freelist head

 A single list organizes free slots

Both allocation and deallocation are at the freelist head

19

Situation 1: Target Slot is Unoccupied

TargetFree Slot Free Slot

freelist
Initial State

1 2 3

1. Allocate the Vul Obj TargetVul Obj Free Slot

freelist

2 3

1

Reason: too few allocations

2. Allocate the Vic Obj TargetVul Obj Vic Obj

freelist

3

2

2

20

Situation 1: Our Solution

TargetFree Slot Free Slot

freelist
Initial State

1 2 3

1. Allocate the Vul Obj TargetVul Obj Free Slot

freelist

2 3

1

2

TargetVul Obj Dummy

freelist

3

2. Allocate a dummy object
from the database

3. Allocate the Vic Obj Vic ObjVul Obj Dummy

3

3

21

Situation 2: Target Slot is Occupied

Free SlotFree Slot Target

freelist
Initial State

1 2 3

1. Allocate the Vul Obj and the S-E Obj Free SlotVul Obj S-E Obj

freelist

3

1 2

Vic ObjVul Obj S-E Obj 2. Allocate the Vic Obj
3

3

Reason: too many allocations

22

Situation 2: Straightforward But Wrong Solution

Free SlotFree Slot Target

freelist
Initial State

1 2 3

1. Allocate the Vul Obj and the S-E Obj Free SlotVul Obj S-E Obj

freelist

3

1 2

Vul Obj Target2. Deallocate the S-E Obj Free Slot

freelist

2 3

-1

Problems with straightforward solution
- No general syscalls and arguments for deallocation
- can also be freed along with the Vul Obj S-E Obj

Vic ObjVul Obj3. Allocate the Vic Obj Free Slot

freelist

3

3-1 = 2

2

23

Situation 2: Our Solution

Free SlotFree Slot Target

freelist

1. Allocate three dummy objects Dummy 3Dummy 1 Dummy 2

Initial State
1 2 3

Our solution is to reorganize the freelist, switching
the target slot’s order from 2nd to 3rd

2. Deallocate the dummy object
in the order 2nd, 3rd, 1st Free SlotFree Slot Target

freelist

1 23

24

Situation 2: Our Solution (cont.)

New Initial State Free SlotFree Slot Target

freelist

1 23

1. Allocate the Vul Obj and the S-E Obj S-E ObjVul Obj Target

freelist1 2

3

S-E ObjVul Obj Vic Obj2. Allocate the Vic Obj
3

3

Evaluation Set

25

27 vulnerabilities (the largest evaluation set so far)

- 26 CVEs, 1 Wild

- 13 UAF, 4 Double Free, 10 Slab Out-of-bound Write

- 18 with public exploits, 9 with NO public exploits

Evaluation Results

26

18 cases with public exploits
- 15 successful cases
- 8 additional unique exploits on avg.

SLAKE diversifies the ways to exploitation

SLAKE potentially escalates exploitability

9 cases with NO public exploits
- 3 successful cases
- 25 unique exploits in total

Evaluation Results (cont.)

27

9 failure cases
- 6 cases, PoC manifests limited capability

Future work: continue exploring more capability of
 security bugs

- 3 cases, vulnerability is in special caches
Future work: include more modules for analysis

Summary & Conclusion

SLAKE

1. Identifies objects useful for kernel exploitation
2. Reorganizes slab and obtains the desired layout

SLAKE is able to

1. Empower the capability of developing working exploits
2. Potentially escalate exploitability and benefit its

assessment for Linux kernel bugs

28

Thank You

29

Code & Data

https://github.com/chenyueqi/SLAKE

Contact

Twitter: @Lewis_Chen_

Email: ychen@ist.psu.edu

Personal Page: http://www.personal.psu.edu/yxc431/

Misc: Looking for 2020 summer internship

https://github.com/chenyueqi/SLAKE
mailto:ychen@ist.psu.edu
http://www.personal.psu.edu/yxc431/

