Facilitate Linux Kernel
Exploitation Step by Step

Yueqi (Lewis) Chen
The Pennsylvania State University

&)

Who am |?

Yueqi Chen . @Lewis_Chen_

- 3rd year Ph.D. student at Pennsylvania State
- interested in OS security and vulnerability analysis
- looking for 2020 summer internship

- I have a story to share

How | began my “career” in Linux kernel exploitation?

About three years aqgo, I received my bachelor degree and went to the U.S. for
Ph.D. study. T was a noob and knew very little about security at that moment.

Me: "What can I do?”
Me: “"Emmmmm, frankly, I don't know."

Me; "What?"

| learned two facts about Linux

“Civilization runs on Linux" [1][2]
- Android (2e9 users), cloud servers, desktops
- cars, transportation
- nuclear submarines, etc.

Linux kernel is buggy
- 801 CVEs in three years (2017, 2018, 2019)
- 4100+ official bug fixes in 2017
- Syzbot[3] reports nearly 200 bugs/month

[1] SLTS project,
[2] "Syzbot and the Tale of Thousand Kernel Bugs” - Dmitry Vyukov, Google
[3] syzbot

https://lwn.net/Articles/749530/
https://syzkaller.appspot.com/upstream

One of the common attack targets is SLAB/SLUB allocator

freelist

A single list organizes free slots _,_, Free Slot

Allocation: freelist

retrieve from the freelist head \‘—> Free Slot

Deallocation: freelist

recycle to the freelist head | Free Slot me Free Slot

Highly simplified, not entirely correct

| read writeups and debugged public exploits

p'l'g fptr benign addr £l pTr‘ benign addr
= Sy Step 1
o~ | I »
Initial slab (kernel heap) Vulnerable OPJecT is fre?d,
Step2.-~ dangling ptr is not nullified
i
dangling p_;r' T roclleens aekls dangling p;r‘ 7 fPL malicious addr
- - | T T - |
Heap Spray: Allocate Spray Obj Dereference the fampered
to famper the function ptr function ptr via dangling ptr

Exploit A Use-After-Free in Three Steps

| read writeups and debugged public exploits (cont.)

e slab Step 1 fptr benign addr
_ MRS - gl Vui Ob; ||| vic ob; [

Allocate a victim object next to
Step 2. -~ the vulnerable object

e

fPTr malicious addr fPtr malicious addr
B vuiobj [N vic ob; [NEIRREECEREEINN vul Ob [vic ob; [N
Trigger the security bug to Dereference "fptr" to hijack control
tamper “fptr" flow

Exploit A Slab Out-of-bound Write in Three Steps

After months, | went back to my advisor

Me: “Now I know how to exploit Linux kernel vulnerabilities."
Me. "But I find it's still challenging to craft an exploit for a new vulnerability..”

Me. “The first challenge is ... “

Challenge 1: how to corrupt “correctly”?

For use-after-free vulnerabilities, a Proof-of-Concept (PoC) program dereferences a
non-critical variable in freed object. For example

// a normal counter, not reference count
But I want a dereference like this

// indirect call,

Challenge 2: which objects to use for Fengshui/Spraying

I have a slab out-of-bound write which can write controllable 12 bytes to the next
object. Which object to overwrite?
- Common candidates: , etc.

I have a use-after-free which dereference critical data. Which object for heap
spraying?
- Common candidates: , etc.

However,
1. common candidates don't match with the vulnerability.

2. fengshui/spraying is hard due to side-effect.

Challenge 3: bypass mitigations in general approach

Kernel is exploited for many years. Many mitigations have been built info the kernel.

1. SMAP/SMEP/PAN

2. KASLR

3. Non-executable Physmap
4. etc.

I need to specify the way to bypass above mitigations case by case.

Is there a general approach?

After months, | went back to my advisor (cont.)

Me: “Are you serious?"

Me: " OK, I will make a try"

Try 1: Challenge Analysis

dangling ptr

occurrence Free

dangling ptr——< IUES
dereference

panic with primitive of
writing unmanagable
data to unmanagable
address

Panic

Free

dangling ptr
occurrence ——»

sendmsg()

dangling ptr

dangling ptr
dereference

dereference

panic with primitive of , | panicwith

writing unmanagable ‘S A primitive of
data to unmanagable controlling
address '

no longer being executed

Try 1: Solution

syscall_A syscall_B ...

userspace =

-~ Site of dangling Exploitable
i & Sysallentry ptr dereference machine state |

: Path explored by Path explored by Non-exploitable i
P - machine state :

Kick in kernel fuzzing to explore new use sites
after freeing the vulnerable object

Symbolically execute the kernel from the new
use sites to check if useful primitives (e.g., RIP
control, arbitrary read/write) can be obtained

Solve conjunction of path constraints towards
primitives and constraints for primitives (e.g.,
function pointer == the malicious address) to
calculate the content of spray object

Try 1: Results

of public exploits | # of generated exploits

2014-2851
2013-7446
Overall

CVE-ID
e 15 kernel UAF vulnerabilities as 2017:1705 : ' 9
. <Brwses] o o |3 2 >

evaluation set 2017-15265 | 0) 0
0 oflc 2017-10661 0 0 0
e Escalated exploitability of 7 . - 5 "
vulnerabilities 20178824 | 0 0 2
. 2017-7374 0 0 0
e The new use sites found generate 12 2016-10150 | 0 0 0
ey ¢ c 2016-8655 1 1 1
GddITI.OIj\Cll explou‘rs' bypassmg SMEP and S . o
3 additional exploits bypassing SMAP 2016-4557 | 1 1 0
2016-0728 1 0 0
L Example: CVE-2017-15649 2015-3636 0 0 0
1 0 0

0 0

5 2 (S

Table 4: Exploitability comparison with and without FUZE.

Try 2: Challenge Analysis

fP% benign addr

for exploitation " "

Allocate a victim object next to
- similar size/same type to be allocated to EETTRICN RIS

the same cache as the vulnerable object
e.g, enclose ptr whose offset is within
corruption range

Try 2: Challenge Analysis

fP% benign addr

for exploitation " s

a victim object next to
the vulnerable object

2. How to (de)allocate and

dereference useful objects
- System call sequence, arguments

B vl obj |11 vic ob; [Nl

“fptr" to hijack control

flow

Try 2: Challenge Analysis

. . . fpf})
fOf‘ exp|0|1'c11'lon Desired Slab Layout
2. How to (de)allocate and N fPI > benign addr
dereference useful objects Vil 05 Nl Torger [vic 00 I
. Situation 1: Target slot is unoccupied
3. How to manipulate slab to f
. P}")benign addr
reach desired layout B Vo On [{sik-etrect [v 0o Il

- unexpected (de)allocation alon
P (de) J Situation 2: Target slot is occupied

with vulnerable/victim object
makes side-effect to slab layout

Try 2: Solution

User Space
build a kernel object database
e Static Analysis to identify useful \
objects, sites of interest ‘\ O

calls ‘ Deallocation

e Fuzzing Kernel to confirm System \‘
calls and complete arguments O

{allocationfldeallocationy -
' S
), poTenTIGI system ernel Space
lloca‘non

Kernel Call Graph

Try 2: Solution (cont.)

Situation 1: Target slot is unoccupied
- 2 allocations while the order of target slot

is 3rd
- add one more allocation of

before NN

Situation 2: Target slot is occupied
- side-effect object possesses the target
- switch the order of slots holding

“seon [

in the freelist

freelist

Vicobj N Target |

1

1

2 3

Target
2 3

Try 2: Results

CVE-ID Explontahon Methods

7 T 0 R Wy
w29 | 00BN\ 60O) | - _ 1350
I 7 e € T g

277 Ve wnrera S es ooz | ooB | o@ | - [- | -
, [aorae | dowleee |- o [- | - |

including UAF, Double Free, —'I—-—_r.ﬂm N 4 T
—wweoms | oA |-/ 350 % [l t@

OOB B 7 | |
Obtained control-flow __——l—_l—_k%
—messs | oAk | - (30 || - | -

| 201710661 | UAF | -\ 3() f - |

hijacking primitive in 14 cases —m———
with public exploits and 3 cases EETEUTEEECTTY T E————.FIAN
: :) 2017607 | dowblefree | _——~ | 7500\ 72ON] -
without public exploits. oms | ooB 0@ Y - /- \| 00
o | ooB K M J - | - NHO/]

aomssee | UAF [~ 3@ J\ - _Jl ~— |

20178890 | dowbleee | - [NAM/[NAO /] - |

om0 | 008 | 00 | ~— | ~— | - |

o ooB | 0@ | - | - | - |

om0 | _ooB | o0 | - | - | - |

—oomwsy | UAF | - (30 D - | - |

5703 | 008 | 0@ [—— | - | - |

Try 3: Challenge Analysis
by SMAP/PAN

corrupted data ptr

blocked by non-executable physmap
blocked by SMEP

shellcode corrupted code ptr

shortcuts patched

native_write_cr4() gadget functions (e.g.,
- = call_usermodehelper

User Space Kernel Space
protected by hypervisor

Virtualization-based Hypervisor

Try 3: Solution s

copy_to_user();
indirect jmp/call >

return;
Disclosure gadget copy_from_user();

indirect jmp/call > .
2nd hijacking® B2t lg
1

Control-flow
hijacking Primitive

\4

Bridging gadget Stack overflow gadget

SMAP/SMEP is
temporarily disabled
during
copy_from_user()

SMAP/SMEP is
temporarily disabled
during copy_to_user()

which overflows kernel
stack with ROP payload
plus canary

Obtained through “Fork" one hijacking which leaks stack
FUZE and SLAKE into two hijackings canary fo userspace

1 2

Try 3: Results

16 CVEs + 3 CTF challenges as
evaluation set

Bypassed mitigations using
control-flow hijacking primitives
in 17 vulnerabilities

CVE-2017-16995
CVE-2017-15649
CVE-2017-10661
CVE-2017-8890
CVE-2017-8824
CVE-2017-7308
CVE-2017-7184
CVE-2017-6074
CVE-2017-5123
CVE-2017-2636
CVE-2016-10150
CVE-2016-8655
CVE-2016-6187
CVE-2016-4557
CVE-2017-17053
CVE-2016-9793
TCTF-credjar
OCTF-knote
CSAW-stringIPC

Vulnerability type

OOB readwrite
use-after-free
use-after-free
use-after-free
use-after-free
heap overflow
heap overflow

double-free
OOB write
double-free
use-after-free
use-after-free
heap overflow
use-after-free
use-after-free
integer overflow
use-after-free
uninitialized use
OOB read&write

Public
exploit

AX O X XXX Oxx S axxS

KEPLER

BN < B >< B < BN < BN < B < BN < B < BN < %

End of my story

Me: "I made attempts. And you see these results.”

Me: “T kind of know how to proceed this direction. I would like to propose ... “

Thank You

Contact

Twitter:
Email:
Personal Page:

mailto:ychen@ist.psu.edu
http://www.personal.psu.edu/yxc431/

