
Facilitate Linux Kernel
Exploitation Step by Step

Yueqi (Lewis) Chen
The Pennsylvania State University

Who am I?

Yueqi Chen @Lewis_Chen_

- 3rd year Ph.D. student at Pennsylvania State
- interested in OS security and vulnerability analysis
- looking for 2020 summer internship

- I have a story to share

How I began my “career” in Linux kernel exploitation?
About three years ago, I received my bachelor degree and went to the U.S. for

Ph.D. study. I was a noob and knew very little about security at that moment.

Me: “What can I do?”

Advisor: “Hey, Linux kernel is vulnerable. Do you know how to exploit them?”

Me: “Emmmmm, frankly, I don’t know.”

Advisor: “Then learn it.”

Me; “What?”

I learned two facts about Linux
“Civilization runs on Linux” [1][2]

- Android (2e9 users), cloud servers, desktops
- cars, transportation
- nuclear submarines, etc.

Linux kernel is buggy
- 801 CVEs in three years (2017, 2018, 2019)
- 4100+ official bug fixes in 2017
- Syzbot[3] reports nearly 200 bugs/month

[1] SLTS project, https://lwn.net/Articles/749530/
[2] “Syzbot and the Tale of Thousand Kernel Bugs” - Dmitry Vyukov, Google
[3] syzbot https://syzkaller.appspot.com/upstream

https://lwn.net/Articles/749530/
https://syzkaller.appspot.com/upstream

One of the common attack targets is SLAB/SLUB allocator

Free SlotFree Slot Free Slot

freelist

Allocation:
retrieve from the freelist head Free SlotObj Free Slot

freelist

Free SlotFree Slot

freelistDeallocation:
recycle to the freelist head

 A single list organizes free slots

Free Slot

Highly simplified, not entirely correct

I read writeups and debugged public exploits
ptr

Initial slab (kernel heap)

Step 1

Step 2

Step 3

 Vul Obj

benign addr fptr

Vulnerable object is freed,
dangling ptr is not nullified

Free Slot

dangling ptr
benign addr fptr

Heap Spray: Allocate Spray Obj
to tamper the function ptr

Spray Obj

malicious addr fptrdangling ptr

Dereference the tampered
function ptr via dangling ptr

Spray Obj

malicious addr fptrdangling ptr

Exploit A Use-After-Free in Three Steps

I read writeups and debugged public exploits (cont.)

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to
tamper “fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab
Step 1

Step 2

Step 3

Exploit A Slab Out-of-bound Write in Three Steps

After months, I went back to my advisor
Me: “Now I know how to exploit Linux kernel vulnerabilities.”

Advisor: “Good job.”

Me: “But I find it’s still challenging to craft an exploit for a new vulnerability..”

Advisor: “Tell me more?”

Me: “The first challenge is … ”

Challenge 1: how to corrupt “correctly”?

For use-after-free vulnerabilities, a Proof-of-Concept (PoC) program dereferences a
non-critical variable in freed object. For example

freed_obj->cnt++; // a normal counter, not reference count

But I want a dereference like this

freed_obj->op(xx, yy); // indirect call, control-flow hijacking!!!

Challenge 2: which objects to use for Fengshui/Spraying
I have a slab out-of-bound write which can write controllable 12 bytes to the next
object. Which object to overwrite?

- Common candidates: struct file, struct tty_struct, etc.

I have a use-after-free which dereference critical data. Which object for heap
spraying?

- Common candidates: send{m}msg, add_key, etc.

However,
1. common candidates don’t match with the vulnerability.
2. fengshui/spraying is hard due to side-effect.

Challenge 3: bypass mitigations in general approach
Kernel is exploited for many years. Many mitigations have been built into the kernel.

1. SMAP/SMEP/PAN
2. KASLR
3. Non-executable Physmap
4. etc.

I need to specify the way to bypass above mitigations case by case.

Is there a general approach?

After months, I went back to my advisor (cont.)

Advisor: “Sounds interesting. Could you solve them?”

Me: “Are you serious?”

Advisor: “Yes.”

Me: “ OK, I will make a try”

Try 1: Challenge Analysis

Free

Use

Panic

Heap spray

New Use

Free

Try 1: Solution

1. Kick in kernel fuzzing to explore new use sites
after freeing the vulnerable object

2. Symbolically execute the kernel from the new
use sites to check if useful primitives (e.g., RIP
control, arbitrary read/write) can be obtained

3. Solve conjunction of path constraints towards
primitives and constraints for primitives (e.g.,
function pointer == the malicious address) to
calculate the content of spray object

Try 1: Results

● 15 kernel UAF vulnerabilities as
evaluation set

● Escalated exploitability of 7
vulnerabilities

● The new use sites found generate 12
additional exploits bypassing SMEP and
3 additional exploits bypassing SMAP

● Example: CVE-2017-15649

Try 2: Challenge Analysis
1. Which kernel object is useful

for exploitation
- similar size/same type to be allocated to

the same cache as the vulnerable object
- e.g, enclose ptr whose offset is within

corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Try 2: Challenge Analysis
1. Which kernel object is useful

for exploitation
- similar size/same type to be allocated to

the same cache as the vulnerable object
- e.g, enclose ptr whose offset is within

corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr
2. How to (de)allocate and

dereference useful objects
- System call sequence, arguments

Try 2: Challenge Analysis
1. Which kernel object is useful

for exploitation
- similar size/same type to be allocated to

the same cache as the vulnerable object
- e.g, enclose ptr whose offset is within

corruption range

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

2. How to (de)allocate and
dereference useful objects

- System call sequence, arguments
3. How to manipulate slab to

reach desired layout
- unexpected (de)allocation along

with vulnerable/victim object
makes side-effect to slab layout

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

Try 2: Solution
build a kernel object database
● Static Analysis to identify useful

objects, sites of interest
(allocation, deallocation,
dereference), potential system
calls

● Fuzzing Kernel to confirm System
calls and complete arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Kernel Call Graph

Try 2: Solution (cont.)
TargetVul Obj Vic Obj

freelist

Vic ObjVul Obj Dummy

Vic ObjVul Obj S-E Obj

S-E ObjVul Obj Vic Obj

Situation 1: Target slot is unoccupied
- 2 allocations while the order of target slot

is 3rd
- add one more allocation of

a before the

Target
Situation 2: Target slot is occupied

- side-effect object possesses the target
- switch the order of slots holding

aaa aaaa a and Vic
in the freelist

1 2 3

Vic Obj

Vic ObjS-E Obj

1 2 3

Dummy

Try 2: Results

● 27 kernel vulnerabilities,
including UAF, Double Free,
OOB

● Obtained control-flow
hijacking primitive in 14 cases
with public exploits and 3 cases
without public exploits.

Try 3: Challenge Analysis
corrupted data ptrfake object

shellcode in physmap

gadget functions (e.g.,
call_usermodehelper)

native_write_cr4()

CR4

User Space Kernel Space

Virtualization-based Hypervisor

corrupted code ptrshellcode
blocked by SMEP

blocked by SMAP/PAN

blocked by non-executable physmap

shortcuts patched

protected by hypervisor

Try 3: Solution

Control-flow
hijacking Primitive

...
indirect jmp/call
…
...
indirect jmp/call
...

copy_to_user();
…
return;

copy_from_user();
…
return;

Bridging gadget

Disclosure gadget

Stack overflow gadget

Obtained through
FUZE and SLAKE

“Fork” one hijacking
into two hijackings

SMAP/SMEP is
temporarily disabled
during copy_to_user()
which leaks stack
canary to userspace

SMAP/SMEP is
temporarily disabled
during
copy_from_user()
which overflows kernel
stack with ROP payload
plus canary

1st hijacking

2nd hijacking

1 2 3 4

Try 3: Results
● 16 CVEs + 3 CTF challenges as

evaluation set
● Bypassed mitigations using

control-flow hijacking primitives
in 17 vulnerabilities

End of my story
Me: “I made attempts. And you see these results.”

Advisor: “Looks awesome. What’s your next plan?”

Me: “I kind of know how to proceed this direction. I would like to propose … ”

Advisor: “Well. Next time we meet. We can discuss your proposal examination.”

Thank You

Contact

Twitter: @Lewis_Chen_
Email: ychen@ist.psu.edu

Personal Page: http://www.personal.psu.edu/yxc431/

mailto:ychen@ist.psu.edu
http://www.personal.psu.edu/yxc431/

