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Vulnerability Exploitation Research in Decades
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2008 Return-oriented Programming: Exploitation without Code Injection

2016 DARPA hosted the Cyber Grand Challenge (CGC) 

The community shows continued enthusiasm 
in vulnerability exploitation. Why?

2011 AEG: Automatic Exploit Generation

2009 Automatic Generation of Control Flow Hijacking Exploits for Software Vulnerabilities



Reasons for Studying Vulnerability Exploitation
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1. Prioritize the Patching of Bugs

Practical solution to minimize the damage: prioritize 

patching of security bugs based on exploitability

a. Linux kernel is security-critical but buggy
i. Android (2e9 users), cloud servers, nuclear submarines, etc.

ii. 631 CVEs (2017, 2018), 4100+ official bug fixes (2017)

b.  Harsh Reality: cannot patch all bugs immediately
i. Google Syzbot on Nov 25th: 458 not fixed, 94 fix pending, 53 in moderation 

ii. # of bug reports increases 200 bugs/month



Reasons for Studying Vulnerability Exploitation (cont.)
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2. Evaluate the effectiveness of defenses

The adversaries know the answer best.

Does the new defense successfully invalidate attacks ?



Reasons for Studying Vulnerability Exploitation (cont.)
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3. Penetration testing
4. Enterprise security risk early warning
...

How to interpret exploitation and exploitability?



Vulnerability Exploitation from State Machine’s Perspective

State Machine of A 
Vulnerable Software
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Weird states of 
Vulnerability 

Exploitation is programming weird machine

[1] Thomas Dullien, “Weird machines, exploitability, and provable unexploitability.”
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Our View of Exploit Development
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Corruption states
e.g., use-after-free

Primitive states 
e.g., control-flow 
hijacking

Success states 
e.g., privilege 
escalation

Good states

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Good states

Exploitability: a property describing whether there is a path from “left” to “right”
Known exploitability: solid line; 
Ground-truth exploitability: solid line + dotted line



Our Works in the Linux Kernel
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Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

FUZE: explore 
corruption capability

SLAKE: facilitate 
slab Fengshui

KEPLER: generally 
bypass mitigations

Corruption states
e.g., use-after-free

Primitive states 
e.g., control-flow 
hijacking

Success states 
e.g., privilege 
escalation

Good states Good statesKey idea: Escalate exploitability (solidate dotted lines and connect more 

paths) towards ground-truth for more sound assessment



Park I
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FUZE: Towards Facilitating Exploit Generation for Kernel 
Use-After-Free Vulnerabilities

USENIX Security 18



Workflow of Use-After-Free Exploitation
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ptr

Initial slab (kernel heap)

Example: Exploit A Use-After-Free in Three Steps

Step 1

Step 2

Step 3

  Vul Obj

benign addr fptr

Vulnerable object is freed, 
dangling ptr is not nullified

Free Slot

dangling ptr
benign addr fptr

Heap Spray: Allocate Spray 
Obj to tamper the function 
ptr

Spray Obj

malicious addr fptrdangling ptr

Dereference the tampered 
function ptr via dangling ptr

Spray Obj

malicious addr fptrdangling ptr



Challenges of Use-After-Free Exploitation

Free

Use

Panic

Proof-of-Concept (PoC)
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Heap spray

New Use

Free

Exploit
Escalate Exploitability

1. What are the system calls and arguments to reach new use sites?
2. Does the new use site provide useful primitives for exploitation?
3. What is the content of spray object?



Overview of FUZE
FUZE’s contributions:

1. Kick in kernel fuzzing to explore new use sites 
after freeing the vulnerable object

2. Symbolically execute the kernel from the new 
use sites to check if useful primitives (e.g., RIP 
control, arbitrary read/write) can be obtained

3. Solve conjunction of path constraints towards 
primitives and constraints for primitives (e.g., 
function pointer  == the malicious address) to 
calculate the content of spray object
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Evaluation
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● 15 kernel UAF vulnerabilities as 
evaluation set

● FUZE escalated exploitability of 7 
vulnerabilities

● The new use sites found by FUZE 
generate 12 additional exploits 
bypassing SMEP and 3 additional 
exploits bypassing SMAP

● Example: CVE-2017-15649



Summary of FUZE
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Assumption
- KASLR can be bypassed given hardware side-channels
- Control flow hijacking, arbitrary read/write primitive indicate 

exploitable machine state
- From PoC program, system calls for freeing object, addr/size of 

freed object can be learned via debugging tools (e.g., KASAN)

Takeaway
- For Use-After-Free vulnerabilities, new uses indicate more memory 

corruption capability
- More memory corruption capability escalates the exploitability



Park II
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SLAKE: Facilitating Slab Manipulation for Exploiting 
Vulnerabilities in the Linux Kernel

ACM CCS 19



Workflow of Slab Out-of-bound Write Exploitation
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Vul Obj Vic Obj

Allocate a victim object next to 
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to 
tamper “fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control 
flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab (kernel heap)
Step 1

Step 2

Step 3

Example: Exploit A Slab Out-of-bound Write in Three Steps



Common Challenges of Slab Vulnerability Exploitation
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1. Which kernel object is useful 
for exploitation

- similar size/same type to be allocated to 
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within 
corruption range

Vul Obj Vic Obj

Allocate a victim object next to 
the vulnerable object

benign addr fptr
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1. Which kernel object is useful 
for exploitation

- similar size/same type to be allocated to 
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within 
corruption range

Vul Obj Vic Obj

Allocate a victim object next to 
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control 
flow

malicious addrfptr
2. How to (de)allocate and 

dereference useful objects
- System call sequence, arguments

Common Challenges of Slab Vulnerability Exploitation



19

1. Which kernel object is useful 
for exploitation

- similar size/same type to be allocated to 
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within 
corruption range

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

2. How to (de)allocate and 
dereference useful objects

- System call sequence, arguments
3. How to manipulate slab to 

reach desired layout
- unexpected (de)allocation along 

with vulnerable/victim object 
makes side-effect to slab layout

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

Common Challenges of Slab Vulnerability Exploitation



 Overview of SLAKE - Resolving Challenge 1&2
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SLAKE builds a kernel object 
database via
● Static Analysis to identify useful 

objects, sites of interest 
(allocation, deallocation, 
dereference), potential system 
calls

● Fuzzing Kernel to confirm System 
calls and complete arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Kernel Call Graph



 Overview of SLAKE - Resolving Challenge 3
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TargetVul Obj Vic Obj

freelist

Vic ObjVul Obj Dummy 

Vic ObjVul Obj S-E Obj 

S-E ObjVul Obj Vic Obj

Situation 1: Target slot is unoccupied
- 2 allocations while the order of target slot 

is 3rd
- add one more allocation  of 

a                  before the 

Target
Situation 2: Target slot is occupied

- side-effect object possesses the target
- switch the order of slots holding                               

aaa   aaaa a and  Vic 
in the freelist

1 2 3

Vic Obj

Vic ObjS-E Obj

1 2 3

Dummy 



Evaluation

● 27 kernel vulnerabilities, 
including UAF, Double Free, 
OOB

● SLAKE obtains control-flow 
hijacking primitive in 14 cases 
with public exploits and 3 cases 
without public exploits.
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Summary of SLAKE
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Assumption
- KASLR can be bypassed given hardware side-channel
- Partial corruption capability can be learned from PoC program via 

debugging tools (e.g., GDB, KASAN)
- Control flow hijacking primitive indicates exploitable machine state

Takeaway
- More useful kernel objects and systematic fengshui approach can 

bridge the gap between memory corruption and primitives
- Filling the gap not only diversifies the ways of performing kernel 

exploitation but also potentially escalates exploitability.



Park III
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KEPLER: Facilitating Control-flow Hijacking Primitive 
Evaluation for Linux Kernel Vulnerabilities

USENIX Security 19



Mitigations in Linux Kernel
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corrupted data ptrfake object
shellcode in physmap

gadget functions (e.g., 
call_usermodehelper)

native_write_cr4()

CR4

User Space Kernel Space

Virtualization-based Hypervisor

corrupted code ptrshellcode
blocked by SMEP

blocked by SMAP/PAN 

blocked by non-executable physmap

shortcuts patched

protected by hypervisor



Overview of KEPLER
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Control-flow 
hijacking Primitive

...
indirect jmp/call
…
...
indirect jmp/call
... 

copy_to_user();
…
return;

copy_from_user();
…
return;

Bridging gadget

Disclosure gadget

Stack overflow gadget

Obtained through 
FUZE and SLAKE

“Fork” one hijacking 
into two hijackings

SMAP/SMEP is 
temporarily disabled 
during copy_to_user() 
which leaks stack 
canary to userspace

SMAP/SMEP is 
temporarily disabled 
during 
copy_from_user() 
which overflows kernel 
stack with ROP payload 
plus canary 

1st hijacking

2nd hijacking

1 2 3 4



Evaluation
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● 16 CVEs + 3 CTF challenges as 
evaluation set

● KEPLER bypasses mitigations 
using control-flow hijacking 
primitives in 17 vulnerabilities



Summary of KEPLER
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Assumption
- KASLR can be bypassed via hardware side-channels
- Control flow hijacking primitive can be gained via FUZE/SLAKE
- SMAP/SMEP, stack canary, STATIC_USERMODEHELPER_PATH, 

non-executable physmap, hypervisor based cr4 protection are 
enabled mitigations.

Takeaway
- Given control-flow hijacking primitives, KEPLER bypasses default 

mitigations in Linux distros
- Bypassing mitigations escalates exploitability



Summary & Future Work
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Our View of Exploit Development
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Memory corruption Fengshui, Payload Bypass Mitigations Repair Corruption

FUZE: explore 
corruption capability

SLAKE: facilitate 
slab Fengshui

KEPLER: generally 
bypass mitigations

Corruption states
e.g., use-after-free

Primitive states 
e.g., control-flow 
hijacking

Success states 
e.g., privilege 
escalation

Good states Good states

Future Work1

1. Reduce the human effort in developing exploitation for Linux kernel

2. Escalate exploitability for more sound assessment and towards ground-truth

Future Work2: 
More types Future Work3

Future Work4

Future Work5



Thank You

Contact

Twitter: @Lewis_Chen_ 
Email: ychen@ist.psu.edu 

Personal Page: http://www.personal.psu.edu/yxc431/
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