
Towards Exploitability Assessment for Linux
Kernel Vulnerabilities

Yueqi (Lewis) Chen

Advisor: Xinyu Xing
The Pennsylvania State University

Nov 22th, 2019

1

Vulnerability Exploitation Research in Decades

2

2008 Return-oriented Programming: Exploitation without Code Injection

2016 DARPA hosted the Cyber Grand Challenge (CGC)

The community shows continued enthusiasm
in vulnerability exploitation. Why?

2011 AEG: Automatic Exploit Generation

2009 Automatic Generation of Control Flow Hijacking Exploits for Software Vulnerabilities

Reasons for Studying Vulnerability Exploitation

3

1. Prioritize the Patching of Bugs

Practical solution to minimize the damage: prioritize

patching of security bugs based on exploitability

a. Linux kernel is security-critical but buggy
i. Android (2e9 users), cloud servers, nuclear submarines, etc.

ii. 631 CVEs (2017, 2018), 4100+ official bug fixes (2017)

b. Harsh Reality: cannot patch all bugs immediately
i. Google Syzbot on Nov 25th: 458 not fixed, 94 fix pending, 53 in moderation

ii. # of bug reports increases 200 bugs/month

Reasons for Studying Vulnerability Exploitation (cont.)

4

2. Evaluate the effectiveness of defenses

The adversaries know the answer best.

Does the new defense successfully invalidate attacks ?

Reasons for Studying Vulnerability Exploitation (cont.)

5

3. Penetration testing
4. Enterprise security risk early warning
...

How to interpret exploitation and exploitability?

Vulnerability Exploitation from State Machine’s Perspective

State Machine of A
Vulnerable Software

6

= +

Good states of
Software

Weird states of
Vulnerability

Exploitation is programming weird machine

[1] Thomas Dullien, “Weird machines, exploitability, and provable unexploitability.”

{x=5}

{x=15}

x += 10;

A

B

Our View of Exploit Development

7

Corruption states
e.g., use-after-free

Primitive states
e.g., control-flow
hijacking

Success states
e.g., privilege
escalation

Good states

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Good states

Exploitability: a property describing whether there is a path from “left” to “right”
Known exploitability: solid line;
Ground-truth exploitability: solid line + dotted line

Our Works in the Linux Kernel

8

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

FUZE: explore
corruption capability

SLAKE: facilitate
slab Fengshui

KEPLER: generally
bypass mitigations

Corruption states
e.g., use-after-free

Primitive states
e.g., control-flow
hijacking

Success states
e.g., privilege
escalation

Good states Good statesKey idea: Escalate exploitability (solidate dotted lines and connect more

paths) towards ground-truth for more sound assessment

Park I

9

FUZE: Towards Facilitating Exploit Generation for Kernel
Use-After-Free Vulnerabilities

USENIX Security 18

Workflow of Use-After-Free Exploitation

10

ptr

Initial slab (kernel heap)

Example: Exploit A Use-After-Free in Three Steps

Step 1

Step 2

Step 3

 Vul Obj

benign addr fptr

Vulnerable object is freed,
dangling ptr is not nullified

Free Slot

dangling ptr
benign addr fptr

Heap Spray: Allocate Spray
Obj to tamper the function
ptr

Spray Obj

malicious addr fptrdangling ptr

Dereference the tampered
function ptr via dangling ptr

Spray Obj

malicious addr fptrdangling ptr

Challenges of Use-After-Free Exploitation

Free

Use

Panic

Proof-of-Concept (PoC)
11

Heap spray

New Use

Free

Exploit
Escalate Exploitability

1. What are the system calls and arguments to reach new use sites?
2. Does the new use site provide useful primitives for exploitation?
3. What is the content of spray object?

Overview of FUZE
FUZE’s contributions:

1. Kick in kernel fuzzing to explore new use sites
after freeing the vulnerable object

2. Symbolically execute the kernel from the new
use sites to check if useful primitives (e.g., RIP
control, arbitrary read/write) can be obtained

3. Solve conjunction of path constraints towards
primitives and constraints for primitives (e.g.,
function pointer == the malicious address) to
calculate the content of spray object

12

Evaluation

13

● 15 kernel UAF vulnerabilities as
evaluation set

● FUZE escalated exploitability of 7
vulnerabilities

● The new use sites found by FUZE
generate 12 additional exploits
bypassing SMEP and 3 additional
exploits bypassing SMAP

● Example: CVE-2017-15649

Summary of FUZE

14

Assumption
- KASLR can be bypassed given hardware side-channels
- Control flow hijacking, arbitrary read/write primitive indicate

exploitable machine state
- From PoC program, system calls for freeing object, addr/size of

freed object can be learned via debugging tools (e.g., KASAN)

Takeaway
- For Use-After-Free vulnerabilities, new uses indicate more memory

corruption capability
- More memory corruption capability escalates the exploitability

Park II

15

SLAKE: Facilitating Slab Manipulation for Exploiting
Vulnerabilities in the Linux Kernel

ACM CCS 19

Workflow of Slab Out-of-bound Write Exploitation

16

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to
tamper “fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab (kernel heap)
Step 1

Step 2

Step 3

Example: Exploit A Slab Out-of-bound Write in Three Steps

Common Challenges of Slab Vulnerability Exploitation

17

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

18

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Allocate a victim object next to
the vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control
flow

malicious addrfptr
2. How to (de)allocate and

dereference useful objects
- System call sequence, arguments

Common Challenges of Slab Vulnerability Exploitation

19

1. Which kernel object is useful
for exploitation

- similar size/same type to be allocated to
the same cache as the vulnerable object

- e.g, enclose ptr whose offset is within
corruption range

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

2. How to (de)allocate and
dereference useful objects

- System call sequence, arguments
3. How to manipulate slab to

reach desired layout
- unexpected (de)allocation along

with vulnerable/victim object
makes side-effect to slab layout

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

Common Challenges of Slab Vulnerability Exploitation

 Overview of SLAKE - Resolving Challenge 1&2

20

SLAKE builds a kernel object
database via
● Static Analysis to identify useful

objects, sites of interest
(allocation, deallocation,
dereference), potential system
calls

● Fuzzing Kernel to confirm System
calls and complete arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Kernel Call Graph

 Overview of SLAKE - Resolving Challenge 3

21

TargetVul Obj Vic Obj

freelist

Vic ObjVul Obj Dummy

Vic ObjVul Obj S-E Obj

S-E ObjVul Obj Vic Obj

Situation 1: Target slot is unoccupied
- 2 allocations while the order of target slot

is 3rd
- add one more allocation of

a before the

Target
Situation 2: Target slot is occupied

- side-effect object possesses the target
- switch the order of slots holding

aaa aaaa a and Vic
in the freelist

1 2 3

Vic Obj

Vic ObjS-E Obj

1 2 3

Dummy

Evaluation

● 27 kernel vulnerabilities,
including UAF, Double Free,
OOB

● SLAKE obtains control-flow
hijacking primitive in 14 cases
with public exploits and 3 cases
without public exploits.

22

Summary of SLAKE

23

Assumption
- KASLR can be bypassed given hardware side-channel
- Partial corruption capability can be learned from PoC program via

debugging tools (e.g., GDB, KASAN)
- Control flow hijacking primitive indicates exploitable machine state

Takeaway
- More useful kernel objects and systematic fengshui approach can

bridge the gap between memory corruption and primitives
- Filling the gap not only diversifies the ways of performing kernel

exploitation but also potentially escalates exploitability.

Park III

24

KEPLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities

USENIX Security 19

Mitigations in Linux Kernel

25

corrupted data ptrfake object
shellcode in physmap

gadget functions (e.g.,
call_usermodehelper)

native_write_cr4()

CR4

User Space Kernel Space

Virtualization-based Hypervisor

corrupted code ptrshellcode
blocked by SMEP

blocked by SMAP/PAN

blocked by non-executable physmap

shortcuts patched

protected by hypervisor

Overview of KEPLER

26

Control-flow
hijacking Primitive

...
indirect jmp/call
…
...
indirect jmp/call
...

copy_to_user();
…
return;

copy_from_user();
…
return;

Bridging gadget

Disclosure gadget

Stack overflow gadget

Obtained through
FUZE and SLAKE

“Fork” one hijacking
into two hijackings

SMAP/SMEP is
temporarily disabled
during copy_to_user()
which leaks stack
canary to userspace

SMAP/SMEP is
temporarily disabled
during
copy_from_user()
which overflows kernel
stack with ROP payload
plus canary

1st hijacking

2nd hijacking

1 2 3 4

Evaluation

27

● 16 CVEs + 3 CTF challenges as
evaluation set

● KEPLER bypasses mitigations
using control-flow hijacking
primitives in 17 vulnerabilities

Summary of KEPLER

28

Assumption
- KASLR can be bypassed via hardware side-channels
- Control flow hijacking primitive can be gained via FUZE/SLAKE
- SMAP/SMEP, stack canary, STATIC_USERMODEHELPER_PATH,

non-executable physmap, hypervisor based cr4 protection are
enabled mitigations.

Takeaway
- Given control-flow hijacking primitives, KEPLER bypasses default

mitigations in Linux distros
- Bypassing mitigations escalates exploitability

Summary & Future Work

29

Our View of Exploit Development

30

Memory corruption Fengshui, Payload Bypass Mitigations Repair Corruption

FUZE: explore
corruption capability

SLAKE: facilitate
slab Fengshui

KEPLER: generally
bypass mitigations

Corruption states
e.g., use-after-free

Primitive states
e.g., control-flow
hijacking

Success states
e.g., privilege
escalation

Good states Good states

Future Work1

1. Reduce the human effort in developing exploitation for Linux kernel

2. Escalate exploitability for more sound assessment and towards ground-truth

Future Work2:
More types Future Work3

Future Work4

Future Work5

Thank You

Contact

Twitter: @Lewis_Chen_
Email: ychen@ist.psu.edu

Personal Page: http://www.personal.psu.edu/yxc431/

31

