
Escalate Exploitability for More Secure
Software Systems

Yueqi Chen

Advisor: Xinyu Xing
The Pennsylvania State University

October 9th, 2020

To Secure Software Systems is Important, Especially Today

2

Cyberwar between nations Info leaking of enterprises Crimes against individuals

Approaches Towards More Secure Software Systems

3

Approach 1: Formal verification

- E.g., seL4

- Proof between C implementation and binary code

Critical Problems

- Clearly define trust/threat model

- Correctly write the underlying specifications

Exploitability is the key concept

[1] The source of Figure 3.1: Gernot Heiser, “The seL4 Microkernel - An Introduction”

Approaches Towards More Secure Software Systems

4

Approach 2: Eradicate all security bugs

- E.g., code auditing, static analysis, fuzzing, etc.

- The # of CVEs increases by year

Critical Problems

- Prioritize the bug patching

- Get rid of incomplete/incorrect patch

Exploitability is the key concept

[2] The source of the figure: Matt Miller, MSRC, “Trends, challenges, and strategic shifts in the software vulnerability mitigation landscape”

Approaches Towards More Secure Software Systems

5

Approach 3: Software systems guard themselves

- E.g., control flow restrictions, partitioning

- False estimate of benefit / cost

Critical Problems

- Justify for mitigations proposal

- Quantify the security improvement

Exploitability is the key concept

[3] The source of the figure: halvar.flake (Thomas Dullien), “Before you ship a security mitigation”

Vulnerability Exploitation - State Machine’s Perspective

The State Machine of
A Vulnerable Software

= +

Good Machine of
the Software

Weird Machine of
the Vulnerability

{x=5}

{x=15}
x += 10;

A

B

[4] Thomas Dullien, “Weird Machines, Exploitability, and Provable Unexploitability”

Viewpoint: Exploitation is programming weird machine

6

Our View of Exploit Development

7

Exploitability: whether there is a path from “left” to “right” (e.g., A→ B → C → D → E)
Ground-truth Exploitability: known + unknown exploit paths
Escalate exploitability: “solidate” unknown exploit paths

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Corruption states
e.g., use-after-free

Primitive states
e.g., ip control

Success states e.g.,
privilege escalationGood states Good states

Known exploit path Unknown exploit path

A

B
C

D

E

Our Previous Works in OS Kernel

8

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Known exploit path Unknown exploit path

A

B
C

D

E

FUZE:
explore capability

SLAKE:
facilitate Fengshui

KEPLER & ELOISE:
bypass mitigations

Part I

FUZE: Towards Facilitating Exploit Generation For
Kernel Use-After-Free Vulnerabilities

USENIX Security 2018

9

Workflow of Use-After-Free Exploitation

10

Step 1

Step 2

Step 3

Vulnerable object is freed,
dangling ptr is not nullified

Free Slot

dangling ptr benign
addr

fptr

Heap Spray: Allocate Spray Obj
to tamper the function ptr

Spray Obj

malicious
addr

fptrdangling ptr

Dereference the tampered
function ptr via dangling ptr

Spray Obj

malicious
addr

fptrdangling ptr

ptr

Initial slab (kernel heap)

 Vul Obj

benign
addr

fptr

Challenges of Use-After-Free Exploitation

11

Free

Use

Panic

Proof-of-Concept (PoC)

New Use

Free

Exploit
Escalate Exploitability

Challenges:
1. What are the system calls and arguments to reach new use sites?
2. Does the new use site provide useful primitives for exploitation?
3. What is the content of spray object to make good use of the primitive?

Overview of FUZE

12

FUZE’s contributions:

1. Kick in kernel fuzzing to explore new use sites
after freeing the vulnerable object

2. Symbolically execute the kernel from the new use
sites to check if useful primitives (e.g., IP control,
arbitrary read/write) can be obtained

3. Solve the conjunction of path constraints towards
the primitive and intended use of the primitive
(e.g., function pointer == the malicious address)
to calculate the content of spray object

Evaluation

13

● 15 kernel UAF vulnerabilities as evaluation
set

● FUZE escalated exploitability of 7
vulnerabilities

● The new use sites found by FUZE generate
12 additional exploits bypassing SMEP
and 3 additional exploits bypassing SMAP

● Example: CVE-2017-15649

Summary of FUZE

14

Assumption

- KASLR can be bypassed given hardware side-channels

- Control flow hijacking, arbitrary read/write primitive indicate
exploitable machine state

- From PoC program, system calls for freeing object, addr/size of freed
object can be learned via debugging tools (e.g., KASAN)

Takeaway

- For Use-After-Free vulnerabilities, new uses indicate more memory
corruption capability

- More memory corruption capability escalates the exploitability

Part II

SLAKE: Facilitating Slab Manipulation for Exploiting
Vulnerabilities in the Linux Kernel

ACM CCS 2019

15

Workflow of Slab Out-of-bound Write Exploitation

16

Vul Obj Vic Obj

Allocate a victim object next to the
vulnerable object

benign addr fptr

Vul Obj Vic Obj

Trigger the security bug to tamper “fptr”

malicious addrfptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control flow

malicious addrfptr

Vul Obj

PoC: Slab-out-of-bound write

slab (kernel heap)
Step 1

Step 2

Step 3

Shared Challenges of Slab Vulnerability Exploitation

17

Vul Obj Vic Obj

1. The victim object and
vulnerable object are
allocated to the same slab

2. The vulnerable object
encloses a function pointer or
other sensitive data

benign addr fptr

1. Which kernel object is useful for
exploitation

Shared Challenges of Slab Vulnerability Exploitation

18

Vul Obj Vic Obj

Allocate a victim object next to the
vulnerable object

benign addr fptr

Vul Obj Vic Obj

Dereference “fptr” to hijack control flow

malicious addrfptr

1. Which kernel object is useful for
exploitation

2. How to (de)allocate and dereference
useful objects

Shared Challenges of Slab Vulnerability Exploitation

19

TargetVul Obj Vic Obj

Situation 1: Target slot is unoccupied

benign addrfptr

Vul Obj Vic Obj

Situation 2: Target slot is occupied

benign addrfptr

Side-effect

Vul Obj Vic Obj

Desired Slab Layout

malicious addr fptr

1. Which kernel object is useful for
exploitation

2. How to (de)allocate and dereference
useful objects

3. How to manipulate slab to reach
desired layout

Overview of SLAKE - Resolving Challenge 1&2

20

Build a kernel object database via

● Static Analysis to identify useful objects,
sites of interest (allocation, deallocation,
dereference), potential system calls

● Fuzzing Kernel to confirm System calls
and complete arguments

 Syscall 1 Syscall 2 ... Syscall n

Allocation

Dereference

Deallocation

User Space

Kernel Space

Overview of SLAKE - Resolving Challenge 3

21

Situation 2: Target slot is occupied
- side-effect object possesses the target
- switch the order of slots holding

aaa aaaa a and Vic
in the freelist

TargetVul Obj Vic Obj

freelist

Vic ObjVul Obj Dummy
1 2 3

Vic ObjVul Obj S-E Obj

S-E ObjVul Obj Vic Obj

Target

1 2 3

Situation 1: Target slot is unoccupied
- 2 allocations while the order of target slot is 3rd
- add one more allocation of

a before the Dummy Vic Obj

S-E Obj Vic Obj

Evaluation

22

● 27 kernel vulnerabilities, including UAF,
Double Free, OOB

● SLAKE obtains control-flow hijacking
primitive in 15 cases with public exploits
and 3 cases without public exploits.

Summary of SLAKE

23

Assumption - same as FUZE
- KASLR can be bypassed given hardware side-channel

- Control flow hijacking primitive indicates exploitable machine state

- Partial corruption capability can be learned from PoC program via
debugging tools (e.g., GDB, KASAN)

Takeaway
- More useful kernel objects and systematic Fengshui approach can

bridge the gap between memory corruption and primitives

- Filling the gap not only diversifies the ways of performing kernel
exploitation but also potentially escalates exploitability.

Part III

KEPLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities

USENIX Security 2019

24

Mitigations in the Linux Kernel

25

corrupted data ptrfake object
shellcode in physmap

gadget functions (e.g.,
call_usermodehelper)

native_write_cr4()

CR4

User Space Kernel Space

Virtualization-based Hypervisor

blocked by SMAP/PAN

blocked by non-executable physmap

shortcuts patched

protected by hypervisor

corrupted code ptrshellcode

blocked by SMEP/PXN

Overview of KEPLER

26

Control-flow
hijacking Primitive
(ip control)

...
indirect jmp/call
…
...
indirect jmp/call
...

copy_to_user();
…
return;

copy_from_user();
…
return;

Bridging gadget

Disclosure gadget

Stack overflow gadget

Obtained through
FUZE and SLAKE

“Fork” one hijacking
into two hijackings

SMAP/SMEP is
temporarily disabled
during copy_to_user()
which leaks stack canary
to userspace

SMAP/SMEP is
temporarily disabled
during copy_from_user()
which overflows kernel
stack with ROP payload
plus canary

1st hijacking

2nd hijacking

1 2 3 4

Evaluation

27

● 16 CVEs + 3 CTF challenges as evaluation set

● KEPLER bypasses mitigations using control-flow
hijacking primitives in 17 vulnerabilities

Summary of KEPLER

28

Assumption
- KASLR can be bypassed via hardware side-channels

- Control flow hijacking primitive can be gained via FUZE/SLAKE

- SMAP/SMEP, stack canary, STATIC_USERMODEHELPER_PATH,
non-executable physmap, hypervisor based cr4 protection are
enabled mitigations

Takeaway
- Given control-flow hijacking primitives, KEPLER bypasses default

mitigations in Linux distros

- Bypassing mitigations escalates exploitability

Contributions & Future Work

29

Contributions

30

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Known exploit path Unknown exploit path

A

B
C

D

E

FUZE:
explore capability

SLAKE:
facilitate Fengshui

KEPLER & ELOISE:
bypass mitigations

Future Work - Continue the Escalation

31

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Known exploit path Unknown exploit path

A

B
C

D

E

FUZE:
explore capability

SLAKE:
facilitate Fengshui

KEPLER & ELOISE:
bypass mitigations

Future work 1:
Repairing

Future work 2:
More types,
e.g., in KOOBE

Future work 4: Stabilize the exploit
Future work 5: Prove unexploitable

Future work 3:
More payload
injection, e.g.,
in leak-kptr

Future Work - Extend the Framework

32

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Known exploit path Unknown exploit path

A

B
C

D

E

Future work 6: Exploit multiple unexploitable bugs
Future work 7: Append more exploitation phases, e.g., load malicious modules for APT attack
Future work 8: More vulnerability types other than memory corruption, e.g., semantic bugs

Future Work - Build Better Mitigations

33

Memory Corruption Fengshui, Payload Bypass Mitigations Repair Corruption

Known exploit path Unknown exploit path

A

B
C

D

E

Future work 9: Study the generality and severity of an exploitation approach
Future work 10: Quantify the security improvement of a proposed mitigation
News: We did some preliminary exploration in our recent CCS paper

Thank You!

34

Contact

Twitter: @Lewis_Chen_
Email: ychen@ist.psu.edu

Personal Page: http://www.personal.psu.edu/yxc431/

mailto:ychen@ist.psu.edu
http://www.personal.psu.edu/yxc431/

